Indian summer monsoon history during the last glacial cycle revealed by a loess sequence from the Tibetan Plateau

IF 2.6 2区 地球科学 Q2 GEOGRAPHY, PHYSICAL Palaeogeography, Palaeoclimatology, Palaeoecology Pub Date : 2024-11-12 DOI:10.1016/j.palaeo.2024.112593
Pushuang Li , Shengli Yang , Yuanlong Luo , Li Liu , Yixiao Zhang , Weiming Liu , Jingzhao Zhang , Xuechao Xu , Chen Wen , Qiong Li
{"title":"Indian summer monsoon history during the last glacial cycle revealed by a loess sequence from the Tibetan Plateau","authors":"Pushuang Li ,&nbsp;Shengli Yang ,&nbsp;Yuanlong Luo ,&nbsp;Li Liu ,&nbsp;Yixiao Zhang ,&nbsp;Weiming Liu ,&nbsp;Jingzhao Zhang ,&nbsp;Xuechao Xu ,&nbsp;Chen Wen ,&nbsp;Qiong Li","doi":"10.1016/j.palaeo.2024.112593","DOIUrl":null,"url":null,"abstract":"<div><div>The Indian Summer Monsoon (ISM) has a profound influence on the environment and people of East Asia. However, despite its importance, the variability and dynamic mechanisms of the ISM remain inadequately understood. This study investigates the evolution of the ISM since the Last Interglacial by analyzing the well-preserved Cuoweng (CW) loess–paleosol sequence in the southeastern Tibetan Plateau. A robust chronological framework is established using quartz optically stimulated luminescence (OSL) dating and K-feldspar post-infrared infrared stimulated luminescence (pIRIR) dating. The history of the ISM over the past ∼135 ka is reconstructed based on multiple environmental proxies. The results indicate that the ISM experienced significant glacial–interglacial fluctuations during the last glacial cycle, exhibiting a strengthened monsoon during warm periods and a weakened one during cold periods. Additionally, suborbital-scale cyclic variations in the ISM during the marine isotope stage (MIS) 5 are revealed, with enhanced monsoon conditions during MIS 5a, 5c, and 5e and weakened conditions during MIS 5b and 5d. These findings suggest that the ISM variations are primarily influenced by a combination of high- and low-latitude forcing. This study provides new insights into the complex responses of the ISM to climate change, enhancing our understanding of its potential future changes.</div></div>","PeriodicalId":19928,"journal":{"name":"Palaeogeography, Palaeoclimatology, Palaeoecology","volume":"657 ","pages":"Article 112593"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Palaeogeography, Palaeoclimatology, Palaeoecology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031018224005820","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Indian Summer Monsoon (ISM) has a profound influence on the environment and people of East Asia. However, despite its importance, the variability and dynamic mechanisms of the ISM remain inadequately understood. This study investigates the evolution of the ISM since the Last Interglacial by analyzing the well-preserved Cuoweng (CW) loess–paleosol sequence in the southeastern Tibetan Plateau. A robust chronological framework is established using quartz optically stimulated luminescence (OSL) dating and K-feldspar post-infrared infrared stimulated luminescence (pIRIR) dating. The history of the ISM over the past ∼135 ka is reconstructed based on multiple environmental proxies. The results indicate that the ISM experienced significant glacial–interglacial fluctuations during the last glacial cycle, exhibiting a strengthened monsoon during warm periods and a weakened one during cold periods. Additionally, suborbital-scale cyclic variations in the ISM during the marine isotope stage (MIS) 5 are revealed, with enhanced monsoon conditions during MIS 5a, 5c, and 5e and weakened conditions during MIS 5b and 5d. These findings suggest that the ISM variations are primarily influenced by a combination of high- and low-latitude forcing. This study provides new insights into the complex responses of the ISM to climate change, enhancing our understanding of its potential future changes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
青藏高原黄土序列揭示的上一个冰川周期印度夏季季风历史
印度夏季季风(ISM)对东亚的环境和人类有着深远的影响。然而,尽管印度夏季季候风非常重要,但人们对其变异性和动态机制的了解仍然不足。本研究通过分析青藏高原东南部保存完好的翠峰(CW)黄土-页岩序列,研究了末次冰期以来印度夏季季风的演变。利用石英光学激发发光(OSL)测年法和K长石红外后激发发光(pIRIR)测年法建立了一个可靠的年代学框架。根据多种环境代用指标重建了 ISM 在过去 ∼135 ka 的历史。结果表明,在上一个冰川周期中,ISM经历了显著的冰川-冰川间波动,在温暖时期季风增强,在寒冷时期季风减弱。此外,研究还揭示了海洋同位素阶段(MIS)5 期间 ISM 的亚轨道尺度周期性变化,在 MIS 5a、5c 和 5e 期间季风条件增强,而在 MIS 5b 和 5d 期间季风条件减弱。这些发现表明,ISM的变化主要受到高纬度和低纬度作用力的共同影响。这项研究为了解ISM对气候变化的复杂反应提供了新的视角,加深了我们对其未来潜在变化的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
10.00%
发文量
398
审稿时长
3.8 months
期刊介绍: Palaeogeography, Palaeoclimatology, Palaeoecology is an international medium for the publication of high quality and multidisciplinary, original studies and comprehensive reviews in the field of palaeo-environmental geology. The journal aims at bringing together data with global implications from research in the many different disciplines involved in palaeo-environmental investigations. By cutting across the boundaries of established sciences, it provides an interdisciplinary forum where issues of general interest can be discussed.
期刊最新文献
Otolith chemistry reveals painted notie (Nototheniops larseni) juvenile stocks differed between southern Bransfield Strait and South Georgia shelf Pulses of life: Wet events in Botucatu Paleodesert evidenced by trace fossils analysis (earliest Cretaceous, Paraná Basin, Brazil) Far-field response to the closure of the Meso-Tethys Ocean: New geochronological evidence from the Chem Co graben in the westernmost part of Central Tibet Editorial Board Sea level and low-latitude climate control on sedimentary provenance and paleoenvironmental evolution in the central Okinawa Trough since 19  cal. ka BP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1