CeMnOX catalysts for enhanced ozonation of phenol: Performance evaluation and mechanism investigation

IF 4.9 2区 化学 Q2 CHEMISTRY, PHYSICAL Colloids and Surfaces A: Physicochemical and Engineering Aspects Pub Date : 2024-11-15 DOI:10.1016/j.colsurfa.2024.135771
Peng Wang , Xueqian Zhang , Bin Zhou , Wencai Zhang , Fanpeng Meng , Chuncheng Wei , Lijuan Zhou , Guangwu Wen , Yishan Wang
{"title":"CeMnOX catalysts for enhanced ozonation of phenol: Performance evaluation and mechanism investigation","authors":"Peng Wang ,&nbsp;Xueqian Zhang ,&nbsp;Bin Zhou ,&nbsp;Wencai Zhang ,&nbsp;Fanpeng Meng ,&nbsp;Chuncheng Wei ,&nbsp;Lijuan Zhou ,&nbsp;Guangwu Wen ,&nbsp;Yishan Wang","doi":"10.1016/j.colsurfa.2024.135771","DOIUrl":null,"url":null,"abstract":"<div><div>In order to enhance the catalytic activity and stability of transition metal catalysts in heterogeneous ozonation and effectively treat phenol-containing wastewater, we synthesized a cerium-manganese composite catalyst (CeMnO<sub>X</sub>) using hydrothermal and calcination methods. The results show that Mn atoms doped into the CeO<sub>2</sub> lattice form CeMnO<sub>X</sub> solid solution, which possesses abundant surface defects. The large specific surface area and pore volume of the catalyst favor the exposure of active sites. The CeMnO<sub>X</sub> catalyst contains rich redox pairs and a high amount of chemisorbed oxygen, with numerous oxygen vacancies serving as reactive sites, thereby improving catalytic performance. Degradation experiments demonstrated that the CeMnO<sub>X</sub> catalyst achieved nearly 100 % COD removal within 30 min during catalytic ozonation of phenol, with a significantly higher catalytic efficiency than pure CeO<sub>2</sub> or MnO<sub>X</sub>. Among them, Ce<sub>0.3</sub>Mn<sub>0.7</sub>O<sub>X</sub> exhibited the best performance due to the presence of both the CeMnO<sub>X</sub> solid solution and MnO<sub>X</sub> phases. The combined effect of oxygen vacancies and the synergistic interaction between Ce and Mn is critical to the exceptional catalytic activity of the CeMnO<sub>X</sub> catalyst.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"706 ","pages":"Article 135771"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775724026359","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In order to enhance the catalytic activity and stability of transition metal catalysts in heterogeneous ozonation and effectively treat phenol-containing wastewater, we synthesized a cerium-manganese composite catalyst (CeMnOX) using hydrothermal and calcination methods. The results show that Mn atoms doped into the CeO2 lattice form CeMnOX solid solution, which possesses abundant surface defects. The large specific surface area and pore volume of the catalyst favor the exposure of active sites. The CeMnOX catalyst contains rich redox pairs and a high amount of chemisorbed oxygen, with numerous oxygen vacancies serving as reactive sites, thereby improving catalytic performance. Degradation experiments demonstrated that the CeMnOX catalyst achieved nearly 100 % COD removal within 30 min during catalytic ozonation of phenol, with a significantly higher catalytic efficiency than pure CeO2 or MnOX. Among them, Ce0.3Mn0.7OX exhibited the best performance due to the presence of both the CeMnOX solid solution and MnOX phases. The combined effect of oxygen vacancies and the synergistic interaction between Ce and Mn is critical to the exceptional catalytic activity of the CeMnOX catalyst.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于增强苯酚臭氧反应的 CeMnOX 催化剂:性能评估和机理研究
为了提高过渡金属催化剂在异相臭氧催化中的催化活性和稳定性,有效处理含酚废水,我们采用水热法和煅烧法合成了铈锰复合催化剂(CeMnOX)。结果表明,掺入 CeO2 晶格中的锰原子形成的 CeMnOX 固溶体具有丰富的表面缺陷。催化剂较大的比表面积和孔隙有利于活性位点的暴露。CeMnOX 催化剂含有丰富的氧化还原对和大量的化学吸附氧,大量的氧空位可作为活性位点,从而提高了催化性能。降解实验表明,CeMnOX 催化剂在催化臭氧氧化苯酚过程中,30 分钟内对 COD 的去除率接近 100%,催化效率明显高于纯 CeO2 或 MnOX。其中,由于同时存在 CeMnOX 固溶体和 MnOX 相,Ce0.3Mn0.7OX 的性能最佳。氧空位和 Ce 与 Mn 之间的协同作用是 CeMnOX 催化剂具有优异催化活性的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
9.60%
发文量
2421
审稿时长
56 days
期刊介绍: Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena. The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.
期刊最新文献
Study on improving the performance of engineered cement-based composites by modifying binder system and polyethylene fiber/matrix interface Toxic gas molecules adsorbed on the original and metal-doped two-dimensional s-C3N4: A first-principles investigation Unveiling molecular alignment, dielectric and electrical conductivity of an unaligned 4-octyl-4′-cyanobiphenyl liquid crystal doped with carbon dots Crown-grafted loose nanofiltration membranes for the recovery of brine resources: Insights from molecular dynamics simulations A first principles study of BiSb monolayer: A novel gas sensor for robotic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1