{"title":"Enhanced gaseous benzene degradation by bimetallic MIL-101(Fe, Cu) activated persulfate system: Efficiency and mechanism","authors":"Tao Tian, Jie Zhang, Sijie Ge, Lijiang Tian","doi":"10.1016/j.colsurfa.2024.135785","DOIUrl":null,"url":null,"abstract":"<div><div>Persulfate oxidation is a promising technology for air pollution control but still suffers from degrading refractory volatile organic compounds (VOCs) under mild conditions. Metal-doped metal-organic frameworks (MOFs) offer a novel strategy to enhance persulfate activation and VOCs degradation. Herein, a novel bimetallic MIL-101 (Fe, Cu) is prepared for more effective degradation of gaseous benzene via persulfate activation. Under optimal conditions (Fe/Cu ratio of 1:4, persulfate concentration of 7 mM/L, pH of 5, and reaction temperature of 70 °C), the MIL-101(Fe1, Cu4) activated persulfate system achieves a benzene degradation efficiency of 79.1 %, a value significantly higher than that of MIL-101(Fe) (20.1 %). The enhanced performance can be attributed to the synergistic effect of Fe²⁺/Fe³⁺ and Cu²⁺/Cu⁺ redox interactions facilitating the activation of persulfate and generation of radical species. Density functional theory (DFT) calculations indicate an increase in the adsorption energy of MIL-101(Fe) in the presence of Cu doping from −3.46 eV to −5.92 eV along with a rise in the Fermi energy level from 0.5 eV to 1.33 eV, enhancing the electron density and mobility. A reaction energy diagram is provided to illustrate the reaction pathways and transition states involved in the degradation of benzene. Overall, the incorporation of Cu in MOFs significantly enhances the efficiency of persulfate-based oxidation systems toward VOCs degradation.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"706 ","pages":"Article 135785"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775724026499","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Persulfate oxidation is a promising technology for air pollution control but still suffers from degrading refractory volatile organic compounds (VOCs) under mild conditions. Metal-doped metal-organic frameworks (MOFs) offer a novel strategy to enhance persulfate activation and VOCs degradation. Herein, a novel bimetallic MIL-101 (Fe, Cu) is prepared for more effective degradation of gaseous benzene via persulfate activation. Under optimal conditions (Fe/Cu ratio of 1:4, persulfate concentration of 7 mM/L, pH of 5, and reaction temperature of 70 °C), the MIL-101(Fe1, Cu4) activated persulfate system achieves a benzene degradation efficiency of 79.1 %, a value significantly higher than that of MIL-101(Fe) (20.1 %). The enhanced performance can be attributed to the synergistic effect of Fe²⁺/Fe³⁺ and Cu²⁺/Cu⁺ redox interactions facilitating the activation of persulfate and generation of radical species. Density functional theory (DFT) calculations indicate an increase in the adsorption energy of MIL-101(Fe) in the presence of Cu doping from −3.46 eV to −5.92 eV along with a rise in the Fermi energy level from 0.5 eV to 1.33 eV, enhancing the electron density and mobility. A reaction energy diagram is provided to illustrate the reaction pathways and transition states involved in the degradation of benzene. Overall, the incorporation of Cu in MOFs significantly enhances the efficiency of persulfate-based oxidation systems toward VOCs degradation.
期刊介绍:
Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena.
The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.