{"title":"Step emulsification for monodisperse droplet creation using a connection-free PDMS microchip","authors":"Kazutaka Ota, Masahiko Hashimoto","doi":"10.1016/j.colsurfa.2024.135725","DOIUrl":null,"url":null,"abstract":"<div><div>Microfluidic technology for generating monodisperse droplets has significantly advanced various scientific and industrial applications. However, reliance on complex infrastructure, such as external pumps and intricate connections, limits its widespread adoption. In this study, we focused on passive droplet formation through step emulsification (SE) using a connection-free polydimethylsiloxane (PDMS) microchip. Our microchip design enabled droplet formation without the need for external pumps for active flow control, instead utilizing the pressure differential created between inlet reservoirs and a shared sealed-outlet space when degassed PDMS was exposed to atmospheric pressure. We began with a simple design and through progressive refinement of the microchip geometry, we achieved a more advanced design that facilitated detailed analysis of droplet formation dynamics. This design allowed for real-time observation of the droplet formation process, including time-dependent variations in droplet formation rate and the associated gentle changes in droplet size, which were intrinsic characteristics of connection-free PDMS microchips. Experiments demonstrated that a triangular nozzle design significantly improved droplet size uniformity, with a coefficient of variation in droplet diameter below 2 % under optimal conditions. These results highlighted the potential of connection-free SE microchips for generating highly uniform droplets in a simplified and efficient manner.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"706 ","pages":"Article 135725"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775724025895","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microfluidic technology for generating monodisperse droplets has significantly advanced various scientific and industrial applications. However, reliance on complex infrastructure, such as external pumps and intricate connections, limits its widespread adoption. In this study, we focused on passive droplet formation through step emulsification (SE) using a connection-free polydimethylsiloxane (PDMS) microchip. Our microchip design enabled droplet formation without the need for external pumps for active flow control, instead utilizing the pressure differential created between inlet reservoirs and a shared sealed-outlet space when degassed PDMS was exposed to atmospheric pressure. We began with a simple design and through progressive refinement of the microchip geometry, we achieved a more advanced design that facilitated detailed analysis of droplet formation dynamics. This design allowed for real-time observation of the droplet formation process, including time-dependent variations in droplet formation rate and the associated gentle changes in droplet size, which were intrinsic characteristics of connection-free PDMS microchips. Experiments demonstrated that a triangular nozzle design significantly improved droplet size uniformity, with a coefficient of variation in droplet diameter below 2 % under optimal conditions. These results highlighted the potential of connection-free SE microchips for generating highly uniform droplets in a simplified and efficient manner.
期刊介绍:
Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena.
The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.