Xuji Zhang , Yishan Wang , Dongdong Liu , Yao Wang , Xueqian Zhang , Xiaoxiao Huang
{"title":"Layer-by-layer densely stacked SnO2/rGO composites for ultrathin electromagnetic wave absorption","authors":"Xuji Zhang , Yishan Wang , Dongdong Liu , Yao Wang , Xueqian Zhang , Xiaoxiao Huang","doi":"10.1016/j.colsurfa.2024.135805","DOIUrl":null,"url":null,"abstract":"<div><div>Tin dioxide (SnO<sub>2</sub>), as an easily tunable dielectric material with adjustable polarisation, high dielectric loss and green environment, has become a new choice for building efficient microwave absorbers. However, the single attenuation mechanism of SnO<sub>2</sub> causes its limitation in the effective absorption of electromagnetic waves. In this study, tin dioxide/graphene composites with layer-by-layer dense stacking structure were successfully synthesised. It was further found that the successful loading of SnO<sub>2</sub> particles in graphene flakes formed abundant heterogeneous interfaces and defects, which improved the interface/defect polarisation of the SnO<sub>2</sub>/rGO composites. The layer-by-layer dense stacked structure enhances the multiple reflection/scattering of electromagnetic waves inside the material, which strengthens the electromagnetic wave loss. In addition, the close connection between the layers helps the rapid electron transport and ensures the good conduction loss of the composite. The excellent synergy between conduction loss and polarisation loss enables the composites to achieve excellent microwave absorption performance, and the layer-by-layer dense stacking structure ensures the thin thickness of the material, with a minimum reflection loss of −41.79 dB and an effective absorption bandwidth of 4.16 GHz at only 2.0 mm. In addition, fighter radar cross section simulations highlight the potential of SnO<sub>2</sub>/rGO composites for radar stealth applications.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"706 ","pages":"Article 135805"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775724026694","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tin dioxide (SnO2), as an easily tunable dielectric material with adjustable polarisation, high dielectric loss and green environment, has become a new choice for building efficient microwave absorbers. However, the single attenuation mechanism of SnO2 causes its limitation in the effective absorption of electromagnetic waves. In this study, tin dioxide/graphene composites with layer-by-layer dense stacking structure were successfully synthesised. It was further found that the successful loading of SnO2 particles in graphene flakes formed abundant heterogeneous interfaces and defects, which improved the interface/defect polarisation of the SnO2/rGO composites. The layer-by-layer dense stacked structure enhances the multiple reflection/scattering of electromagnetic waves inside the material, which strengthens the electromagnetic wave loss. In addition, the close connection between the layers helps the rapid electron transport and ensures the good conduction loss of the composite. The excellent synergy between conduction loss and polarisation loss enables the composites to achieve excellent microwave absorption performance, and the layer-by-layer dense stacking structure ensures the thin thickness of the material, with a minimum reflection loss of −41.79 dB and an effective absorption bandwidth of 4.16 GHz at only 2.0 mm. In addition, fighter radar cross section simulations highlight the potential of SnO2/rGO composites for radar stealth applications.
期刊介绍:
Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena.
The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.