A random sequential adsorption model for the prediction of SARS-CoV-2 spike protein spatial and orientational distribution on a sensing surface

IF 4.9 2区 化学 Q2 CHEMISTRY, PHYSICAL Colloids and Surfaces A: Physicochemical and Engineering Aspects Pub Date : 2024-11-19 DOI:10.1016/j.colsurfa.2024.135801
Vilius Vertelis , Julian Talbot , Vincentas Maciulis , Silvija Juciute , Ieva Plikusiene
{"title":"A random sequential adsorption model for the prediction of SARS-CoV-2 spike protein spatial and orientational distribution on a sensing surface","authors":"Vilius Vertelis ,&nbsp;Julian Talbot ,&nbsp;Vincentas Maciulis ,&nbsp;Silvija Juciute ,&nbsp;Ieva Plikusiene","doi":"10.1016/j.colsurfa.2024.135801","DOIUrl":null,"url":null,"abstract":"<div><div>The interaction between antibodies and viral proteins is crucial for immune response, and understanding these interactions is therefore of great importance. The sensitivity of immunosensors, where antigens are immobilized, largely depends on their orientation. However, experimental methods to determine the orientation are often time-consuming and require specialized equipment. In this paper, we present a random sequential adsorption (RSA) model for the spatial and orientational distribution of the SARS-CoV-2 spike protein immobilized on an 11-mercaptoundecanoic acid self-assembling monolayer. We compare the RSA model prediction with experimentally obtained results for the surface mass density, <span><math><mrow><mn>581</mn><mo>±</mo><mn>28</mn></mrow></math></span> fmol/<span><math><msup><mrow><mi>cm</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, and the average number of available RBD per spike protein, 1.19. Experimental results were in good agreement for both immobilized SCoV2-S monolayer (560 fmol/cm<sup>2</sup>) and SCoV2-S/mAb (634 fmol/cm<sup>2</sup>). This validation of our simulation results allows us to draw conclusions about binding site density and the observed high sensitivity of the immunosensors. Our findings provide important insights into epitope density and immunosensor sensitivity, offering substantial utility for advancing biosensor research methodologies.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"706 ","pages":"Article 135801"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775724026657","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The interaction between antibodies and viral proteins is crucial for immune response, and understanding these interactions is therefore of great importance. The sensitivity of immunosensors, where antigens are immobilized, largely depends on their orientation. However, experimental methods to determine the orientation are often time-consuming and require specialized equipment. In this paper, we present a random sequential adsorption (RSA) model for the spatial and orientational distribution of the SARS-CoV-2 spike protein immobilized on an 11-mercaptoundecanoic acid self-assembling monolayer. We compare the RSA model prediction with experimentally obtained results for the surface mass density, 581±28 fmol/cm2, and the average number of available RBD per spike protein, 1.19. Experimental results were in good agreement for both immobilized SCoV2-S monolayer (560 fmol/cm2) and SCoV2-S/mAb (634 fmol/cm2). This validation of our simulation results allows us to draw conclusions about binding site density and the observed high sensitivity of the immunosensors. Our findings provide important insights into epitope density and immunosensor sensitivity, offering substantial utility for advancing biosensor research methodologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于预测 SARS-CoV-2 穗状蛋白质在传感表面上的空间和方向分布的随机顺序吸附模型
抗体与病毒蛋白之间的相互作用对免疫反应至关重要,因此了解这些相互作用具有重要意义。固定抗原的免疫传感器的灵敏度在很大程度上取决于抗原的取向。然而,确定取向的实验方法往往耗时且需要专业设备。本文针对固定在 11-巯基十酸自组装单层上的 SARS-CoV-2 尖峰蛋白的空间和方向分布,提出了一种随机顺序吸附(RSA)模型。我们将 RSA 模型的预测结果与实验结果进行了比较,结果表明表面质量密度为 581±28 fmol/cm2,每个尖峰蛋白的可用 RBD 平均数为 1.19。实验结果与固定化 SCoV2-S 单层(560 fmol/cm2)和 SCoV2-S/mAb (634 fmol/cm2)的结果十分吻合。通过对模拟结果的验证,我们得出了关于结合位点密度和所观察到的免疫传感器高灵敏度的结论。我们的研究结果提供了关于表位密度和免疫传感器灵敏度的重要见解,为推动生物传感器研究方法的发展提供了实质性的帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
9.60%
发文量
2421
审稿时长
56 days
期刊介绍: Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena. The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.
期刊最新文献
Study on improving the performance of engineered cement-based composites by modifying binder system and polyethylene fiber/matrix interface Toxic gas molecules adsorbed on the original and metal-doped two-dimensional s-C3N4: A first-principles investigation Unveiling molecular alignment, dielectric and electrical conductivity of an unaligned 4-octyl-4′-cyanobiphenyl liquid crystal doped with carbon dots Crown-grafted loose nanofiltration membranes for the recovery of brine resources: Insights from molecular dynamics simulations A first principles study of BiSb monolayer: A novel gas sensor for robotic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1