Structural, morphological, and electric study of doped- Na2Zn2TeO6 family in a wide range of temperatures

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering B-advanced Functional Solid-state Materials Pub Date : 2024-11-27 DOI:10.1016/j.mseb.2024.117865
R. Salgado, S. Terny, M.A. Frechero
{"title":"Structural, morphological, and electric study of doped- Na2Zn2TeO6 family in a wide range of temperatures","authors":"R. Salgado,&nbsp;S. Terny,&nbsp;M.A. Frechero","doi":"10.1016/j.mseb.2024.117865","DOIUrl":null,"url":null,"abstract":"<div><div>Nowadays Sodium solid conductors are intensely studied to develop electrochemical energy storage devices to boost the development of sodium ion batteries. The Na<sub>2</sub>Zn<sub>2</sub>TeO<sub>6</sub> (NZTO) has been stablished as a 2D Na-ion conductor with excellent performance at low temperature. In this work four doped-NZTO have been synthesized by solid state reaction. The metal cations incorporated were: Ba<sup>2+</sup>, Nb<sup>5+</sup>, Mo<sup>6+</sup>, W<sup>6+</sup>. Their structures were characterized by XRD as a function of the temperature, and the Rietveld and Le Bail refinement were applied. Also, the thermal stability was studied by DSC technique between −40 °C to 400 °C. SEM, EDS and density measurement complement the information on structural features. The electrical conductivity, studied by impedance spectroscopy and DC polarization, confirmed that it is possible to minimize the inherent electronic conductivity and that the material’s best performance, as a pure sodium conductor, was achieved at low temperature Moreover, this technique confirmed that the presence of a reversible order/disorder transition of sodium ions /vacancies in the structure has an important effect on the total conductivity. Additionally, it was analyzed how to minimize the sodium loss during the sintering process to diminish the secondary phase formation.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"312 ","pages":"Article 117865"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering B-advanced Functional Solid-state Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510724006949","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays Sodium solid conductors are intensely studied to develop electrochemical energy storage devices to boost the development of sodium ion batteries. The Na2Zn2TeO6 (NZTO) has been stablished as a 2D Na-ion conductor with excellent performance at low temperature. In this work four doped-NZTO have been synthesized by solid state reaction. The metal cations incorporated were: Ba2+, Nb5+, Mo6+, W6+. Their structures were characterized by XRD as a function of the temperature, and the Rietveld and Le Bail refinement were applied. Also, the thermal stability was studied by DSC technique between −40 °C to 400 °C. SEM, EDS and density measurement complement the information on structural features. The electrical conductivity, studied by impedance spectroscopy and DC polarization, confirmed that it is possible to minimize the inherent electronic conductivity and that the material’s best performance, as a pure sodium conductor, was achieved at low temperature Moreover, this technique confirmed that the presence of a reversible order/disorder transition of sodium ions /vacancies in the structure has an important effect on the total conductivity. Additionally, it was analyzed how to minimize the sodium loss during the sintering process to diminish the secondary phase formation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
宽温度范围内掺杂 Na2Zn2TeO6 族的结构、形态和电学研究
目前,人们正在深入研究钠固体导体,以开发电化学储能装置,促进钠离子电池的发展。Na2Zn2TeO6(NZTO)作为一种二维钠离子导体,在低温下具有优异的性能。本研究通过固态反应合成了四种掺杂 NZTO。掺入的金属阳离子为Ba2+、Nb5+、Mo6+、W6+。用 XRD 表征了它们的结构与温度的函数关系,并采用了 Rietveld 和 Le Bail 精炼方法。此外,还利用 DSC 技术研究了 -40 °C 至 400 °C 之间的热稳定性。SEM、EDS 和密度测定补充了结构特征方面的信息。通过阻抗光谱和直流极化对电导率进行了研究,结果证实可以最大限度地减少固有的电子电导率,而且该材料作为纯钠导体的最佳性能是在低温条件下实现的。此外,还分析了如何在烧结过程中尽量减少钠的损失,以减少次生相的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
期刊最新文献
Improved magnetic and thermal conductivity performance of FeSi soft magnetic composites by adding h-BN Structural, morphological, and electric study of doped- Na2Zn2TeO6 family in a wide range of temperatures Performance enhancement of intermediate-temperature SOFCs using Ba0.5Sr0.5Sc0.2-xTaxCo0.8O3-δ-Based composite cathodes 2D materials integrated with polymers for sustainable energy harvesting through triboelectric nanogenerators Bifunctional heterostructure ZnWO4@ZnO nanocomposite for high-performance electrocatalysis and supercapacitor applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1