Audrey Berriot , Morgane Evin , Karim Kerkouche , Elisabeth Laroche , Eva Gerard , Eric Wagnac
{"title":"Exploring the effect of displacement rate on the mechanical properties of denticulate ligaments through uniaxial tensile testing","authors":"Audrey Berriot , Morgane Evin , Karim Kerkouche , Elisabeth Laroche , Eva Gerard , Eric Wagnac","doi":"10.1016/j.jmbbm.2024.106824","DOIUrl":null,"url":null,"abstract":"<div><div>Denticulate ligaments play a key role in stabilizing the spinal cord (SC). Accurate representation of these structures in finite element modelling, whether in quasi-static or dynamic conditions, is essential for providing biofidelic responses. Therefore, understanding, characterizing and comparing the tensile mechanical properties of denticulate ligaments at different loading velocities is crucial. A total of 38 denticulate ligament samples at different cervical levels (anatomical levels from C1 to C7) were obtained from 3 fresh porcine SCs and 86 uniaxial tensile tests were performed immediately after dissection using an electro-mechanical testing system equipped with a 22 N loadcell. The mechanical tests included 10 cycles of preconditioning and a ramp with displacement rates of 0.1 mm s<sup>−1</sup>, 1 mm s<sup>−1</sup> and 10 mm s<sup>−1</sup>. Bilinear piecewise fitting and trilinear piecewise fitting were performed to determine the elastic modulus and maximum stress and strainof the samples. While no significant differences in the mechanical behavior of the denticulate ligaments were found across the different displacement rates, notable variations were found between spinal levels, with a significantly higher elastic modulus at the lower cervical levels.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"162 ","pages":"Article 106824"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124004569","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Denticulate ligaments play a key role in stabilizing the spinal cord (SC). Accurate representation of these structures in finite element modelling, whether in quasi-static or dynamic conditions, is essential for providing biofidelic responses. Therefore, understanding, characterizing and comparing the tensile mechanical properties of denticulate ligaments at different loading velocities is crucial. A total of 38 denticulate ligament samples at different cervical levels (anatomical levels from C1 to C7) were obtained from 3 fresh porcine SCs and 86 uniaxial tensile tests were performed immediately after dissection using an electro-mechanical testing system equipped with a 22 N loadcell. The mechanical tests included 10 cycles of preconditioning and a ramp with displacement rates of 0.1 mm s−1, 1 mm s−1 and 10 mm s−1. Bilinear piecewise fitting and trilinear piecewise fitting were performed to determine the elastic modulus and maximum stress and strainof the samples. While no significant differences in the mechanical behavior of the denticulate ligaments were found across the different displacement rates, notable variations were found between spinal levels, with a significantly higher elastic modulus at the lower cervical levels.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.