{"title":"A Kalman filter for track reconstruction in very large time projection chambers","authors":"Federico Battisti , Marian Ivanov , Xianguo Lu","doi":"10.1016/j.cpc.2024.109443","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a Kalman Filter tailored for homogeneous gas Time Projection Chambers (TPCs), adapted from the algorithm utilized by the ALICE experiment. In order to describe semi-circular paths in the plane perpendicular to the magnetic field, we introduce a novel mirror rotation technique into the Kalman Filter algorithm, enabling effective tracking of trajectories of varying lengths, including those with multiple circular paths within the detector, also known as “loopers”. Demonstrated relative improvements of up to 80% in electron momentum resolution and up to 50% in muon and pion momentum resolution underscore the significance of this enhancement. Significant improvements in the reconstruction efficiency for relatively short low momentum “looper” tracks are also shown. Such advancements hold promise not only for the future of the ALICE TPC but also for neutrino high-pressure gas TPCs, where loopers become significant owing to the randomness of production points and their relatively low energies in neutrino interactions. In particular, an improvement in low energy electron reconstruction, for which the production of “looping” tracks is likely and the impact of the new algorithm is directly demonstrated, could significantly impact the quality of flux determination, which in accelerator neutrino experiments relies on the measurement of <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> electron scatterings.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"308 ","pages":"Article 109443"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524003667","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a Kalman Filter tailored for homogeneous gas Time Projection Chambers (TPCs), adapted from the algorithm utilized by the ALICE experiment. In order to describe semi-circular paths in the plane perpendicular to the magnetic field, we introduce a novel mirror rotation technique into the Kalman Filter algorithm, enabling effective tracking of trajectories of varying lengths, including those with multiple circular paths within the detector, also known as “loopers”. Demonstrated relative improvements of up to 80% in electron momentum resolution and up to 50% in muon and pion momentum resolution underscore the significance of this enhancement. Significant improvements in the reconstruction efficiency for relatively short low momentum “looper” tracks are also shown. Such advancements hold promise not only for the future of the ALICE TPC but also for neutrino high-pressure gas TPCs, where loopers become significant owing to the randomness of production points and their relatively low energies in neutrino interactions. In particular, an improvement in low energy electron reconstruction, for which the production of “looping” tracks is likely and the impact of the new algorithm is directly demonstrated, could significantly impact the quality of flux determination, which in accelerator neutrino experiments relies on the measurement of electron scatterings.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.