Vector embeddings by sequence similarity and context for improved compression, similarity search, clustering, organization, and manipulation of cDNA libraries
{"title":"Vector embeddings by sequence similarity and context for improved compression, similarity search, clustering, organization, and manipulation of cDNA libraries","authors":"Daniel H. Um , David A. Knowles , Gail E. Kaiser","doi":"10.1016/j.compbiolchem.2024.108251","DOIUrl":null,"url":null,"abstract":"<div><div>This paper demonstrates the utility of organized numerical representations of genes in research involving flat string gene formats (i.e., FASTA/FASTQ<sup>5</sup>). By assigning a unique vector embedding to each short sequence, it is possible to more efficiently cluster and improve upon compression performance for the string representations of cDNA libraries. Furthermore, by studying alternative coordinate vector embeddings trained on the context of codon triplets, we can demonstrate clustering based on amino acid properties. Employing this sequence embedding method to encode barcodes and cDNA sequences, we can improve the time complexity of similarity searches. By pairing vector embeddings with an algorithm that determines the vector proximity in Euclidean space, this approach enables quicker and more flexible sequence searches.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"114 ","pages":"Article 108251"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124002391","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper demonstrates the utility of organized numerical representations of genes in research involving flat string gene formats (i.e., FASTA/FASTQ5). By assigning a unique vector embedding to each short sequence, it is possible to more efficiently cluster and improve upon compression performance for the string representations of cDNA libraries. Furthermore, by studying alternative coordinate vector embeddings trained on the context of codon triplets, we can demonstrate clustering based on amino acid properties. Employing this sequence embedding method to encode barcodes and cDNA sequences, we can improve the time complexity of similarity searches. By pairing vector embeddings with an algorithm that determines the vector proximity in Euclidean space, this approach enables quicker and more flexible sequence searches.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.