Methodology for hyperparameter tuning of deep neural networks for efficient and accurate molecular property prediction

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-11-14 DOI:10.1016/j.compchemeng.2024.108928
Xuan Dung James Nguyen, Y.A. Liu
{"title":"Methodology for hyperparameter tuning of deep neural networks for efficient and accurate molecular property prediction","authors":"Xuan Dung James Nguyen,&nbsp;Y.A. Liu","doi":"10.1016/j.compchemeng.2024.108928","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a methodology of hyperparameter optimization (HPO) of deep neural networks for molecular property prediction (MPP). Most prior applications of deep learning to MPP have paid only limited attention to HPO, thus resulting in suboptimal values of predicted properties. To improve the efficiency and accuracy of deep learning models for MPP, we must optimize as many hyperparameters as possible and choose a software platform to enable the parallel execution of HPO. We compare the random search, Bayesian optimization, and hyperband algorithms, together with the Bayesian-hyperband combination within the software packages of KerasTuner and Optuna for HPO. We conclude that the hyperband algorithm, which has not been used in previous MPP studies, is most computationally efficient; it gives MPP results that are optimal or nearly optimal in terms of prediction accuracy. Based on our case studies, we recommend the use of the Python library KerasTuner for HPO.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"193 ","pages":"Article 108928"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003466","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a methodology of hyperparameter optimization (HPO) of deep neural networks for molecular property prediction (MPP). Most prior applications of deep learning to MPP have paid only limited attention to HPO, thus resulting in suboptimal values of predicted properties. To improve the efficiency and accuracy of deep learning models for MPP, we must optimize as many hyperparameters as possible and choose a software platform to enable the parallel execution of HPO. We compare the random search, Bayesian optimization, and hyperband algorithms, together with the Bayesian-hyperband combination within the software packages of KerasTuner and Optuna for HPO. We conclude that the hyperband algorithm, which has not been used in previous MPP studies, is most computationally efficient; it gives MPP results that are optimal or nearly optimal in terms of prediction accuracy. Based on our case studies, we recommend the use of the Python library KerasTuner for HPO.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度神经网络超参数调整方法,用于高效准确的分子特性预测
本文介绍了一种用于分子性质预测(MPP)的深度神经网络超参数优化(HPO)方法。此前,深度学习在 MPP 中的应用大多只对 HPO 给予了有限的关注,从而导致预测的属性值未达标。为了提高深度学习模型用于 MPP 的效率和准确性,我们必须尽可能多地优化超参数,并选择一个能够并行执行 HPO 的软件平台。我们比较了随机搜索、贝叶斯优化和超带算法,以及用于 HPO 的 KerasTuner 和 Optuna 软件包中的贝叶斯-超带组合。我们得出的结论是,超带算法(以前的 MPP 研究中未使用过)的计算效率最高;就预测精度而言,它给出的 MPP 结果是最优或接近最优的。基于我们的案例研究,我们建议使用 Python 库 KerasTuner 进行 HPO。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
Editorial Board ARRTOC: Adversarially Robust Real-Time Optimization and Control Distributionally robust CVaR optimization for refinery integrated production–maintenance scheduling under uncertainty Machine learning in PEM water electrolysis: A study of hydrogen production and operating parameters Gas dispersion modeling in stereoscopic space with obstacles using a novel spatiotemporal prediction network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1