Prediction of viscoelastic and printability properties on binder-free TiO2-based ceramic pastes by DIW through a machine learning approach

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-11-16 DOI:10.1016/j.compchemeng.2024.108920
Luis Antonio Pulido-Victoria , Antonio Flores-Tlacuahuac , Alexander Panales-Pérez , Tania E. Lara-Ceniceros , Manuel Alejandro Ávila-López , José Bonilla-Cruz
{"title":"Prediction of viscoelastic and printability properties on binder-free TiO2-based ceramic pastes by DIW through a machine learning approach","authors":"Luis Antonio Pulido-Victoria ,&nbsp;Antonio Flores-Tlacuahuac ,&nbsp;Alexander Panales-Pérez ,&nbsp;Tania E. Lara-Ceniceros ,&nbsp;Manuel Alejandro Ávila-López ,&nbsp;José Bonilla-Cruz","doi":"10.1016/j.compchemeng.2024.108920","DOIUrl":null,"url":null,"abstract":"<div><div>Ceramic 3D printing has become an increasingly popular manufacturing technique due to its potential to create complex geometries with high precision. However, predicting the printability of ceramic pastes remains a challenge, as it depends on various rheological properties. In this study, we propose a feed-forward deep neural network model that predicts the printability of ceramic pastes based on two suggested criteria, a shear-thinning ability and a gel point greater than <span><math><mrow><mn>1</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> Pa. The model is trained on a dataset built from rheological and viscoelastic characterizations of pastes, and validated on a separate test set. Our results show that the proposed learning model achieves small relative error in predicting the gel point of the ceramic pastes, with a mean value of 8.99181 and a standard deviation of 1.812864. This model has the potential to improve the efficiency and quality of ceramic 3D printing by enabling rapid and accurate predictions of paste printability.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"193 ","pages":"Article 108920"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003387","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Ceramic 3D printing has become an increasingly popular manufacturing technique due to its potential to create complex geometries with high precision. However, predicting the printability of ceramic pastes remains a challenge, as it depends on various rheological properties. In this study, we propose a feed-forward deep neural network model that predicts the printability of ceramic pastes based on two suggested criteria, a shear-thinning ability and a gel point greater than 1×103 Pa. The model is trained on a dataset built from rheological and viscoelastic characterizations of pastes, and validated on a separate test set. Our results show that the proposed learning model achieves small relative error in predicting the gel point of the ceramic pastes, with a mean value of 8.99181 and a standard deviation of 1.812864. This model has the potential to improve the efficiency and quality of ceramic 3D printing by enabling rapid and accurate predictions of paste printability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过机器学习方法预测 DIW 不含粘合剂的 TiO2 基陶瓷浆料的粘弹性和可印刷性
陶瓷三维打印技术因其具有高精度创建复杂几何形状的潜力,已成为一种日益流行的制造技术。然而,预测陶瓷浆料的可打印性仍然是一项挑战,因为它取决于各种流变特性。在这项研究中,我们提出了一种前馈式深度神经网络模型,该模型可根据两个建议标准(剪切稀化能力和凝胶点大于 1×103 Pa)预测陶瓷浆料的可印刷性。结果表明,所提出的学习模型在预测陶瓷浆料凝胶点时的相对误差较小,平均值为 8.99181,标准偏差为 1.812864。通过快速准确地预测陶瓷浆料的可打印性,该模型有望提高陶瓷三维打印的效率和质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
Editorial Board Highly accelerated kinetic Monte Carlo models for depolymerisation systems An optimization approach for sustainable and resilient closed-loop floating solar photovoltaic supply chain network design A semi-supervised learning algorithm for high and low-frequency variable imbalances in industrial data Prediction of viscoelastic and printability properties on binder-free TiO2-based ceramic pastes by DIW through a machine learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1