Data-driven robust optimization for pipeline scheduling under flow rate uncertainty

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-11-14 DOI:10.1016/j.compchemeng.2024.108924
Amir Baghban , Pedro M. Castro , Fabricio Oliveira
{"title":"Data-driven robust optimization for pipeline scheduling under flow rate uncertainty","authors":"Amir Baghban ,&nbsp;Pedro M. Castro ,&nbsp;Fabricio Oliveira","doi":"10.1016/j.compchemeng.2024.108924","DOIUrl":null,"url":null,"abstract":"<div><div>Frequently, parameters in optimization models are subject to a high level of uncertainty coming from several sources and, as such, assuming them to be deterministic can lead to solutions that are infeasible in practice. Robust optimization is a computationally efficient approach that generates solutions that are feasible for realizations of uncertain parameters near the nominal value. This paper develops a data-driven robust optimization approach for the scheduling of a straight pipeline connecting a single refinery with multiple distribution centers, considering uncertainty in the injection rate. For that, we apply support vector clustering to learn an uncertainty set for the robust version of the deterministic model. We compare the performance of our proposed robust model against one utilizing a standard robust optimization approach and conclude that data-driven robust solutions are less conservative.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"193 ","pages":"Article 108924"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003429","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Frequently, parameters in optimization models are subject to a high level of uncertainty coming from several sources and, as such, assuming them to be deterministic can lead to solutions that are infeasible in practice. Robust optimization is a computationally efficient approach that generates solutions that are feasible for realizations of uncertain parameters near the nominal value. This paper develops a data-driven robust optimization approach for the scheduling of a straight pipeline connecting a single refinery with multiple distribution centers, considering uncertainty in the injection rate. For that, we apply support vector clustering to learn an uncertainty set for the robust version of the deterministic model. We compare the performance of our proposed robust model against one utilizing a standard robust optimization approach and conclude that data-driven robust solutions are less conservative.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
流量不确定情况下管道调度的数据驱动稳健优化
优化模型中的参数通常会受到来自多个来源的高度不确定性的影响,因此,假设这些参数是确定的,可能会导致解决方案在实践中不可行。稳健优化是一种计算效率高的方法,它生成的解决方案对接近标称值的不确定参数的实现是可行的。本文针对连接单个炼油厂和多个配送中心的直线管道的调度问题,开发了一种数据驱动的稳健优化方法,并考虑了注入率的不确定性。为此,我们应用支持向量聚类来学习确定性模型鲁棒版本的不确定性集。我们比较了我们提出的稳健模型与使用标准稳健优化方法的模型的性能,得出的结论是数据驱动的稳健解决方案更保守。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
Editorial Board ARRTOC: Adversarially Robust Real-Time Optimization and Control Distributionally robust CVaR optimization for refinery integrated production–maintenance scheduling under uncertainty Machine learning in PEM water electrolysis: A study of hydrogen production and operating parameters Gas dispersion modeling in stereoscopic space with obstacles using a novel spatiotemporal prediction network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1