Dynamic VAEs via semantic-aligned matching for continual zero-shot learning

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Pub Date : 2024-11-21 DOI:10.1016/j.patcog.2024.111199
Junbo Yang , Borui Hu , Hanyu Li , Yang Liu , Xinbo Gao , Jungong Han , Fanglin Chen , Xuangou Wu
{"title":"Dynamic VAEs via semantic-aligned matching for continual zero-shot learning","authors":"Junbo Yang ,&nbsp;Borui Hu ,&nbsp;Hanyu Li ,&nbsp;Yang Liu ,&nbsp;Xinbo Gao ,&nbsp;Jungong Han ,&nbsp;Fanglin Chen ,&nbsp;Xuangou Wu","doi":"10.1016/j.patcog.2024.111199","DOIUrl":null,"url":null,"abstract":"<div><div>Continual Zero-shot Learning (CZSL) is capable of classifying unseen categories across a sequence of tasks. However, CZSL is often plagued by the challenge of catastrophic forgetting. While recent studies have shown that preserving past data for experience replay can effectively address this issue, it may be limited to specific scenarios and pose a risk of data leakage. Additionally, many existing CZSL models fail to adequately highlight the correlation between semantic and visual features. To tackle these shortcomings, we introduce dynamic Variational Autoencoders (VAEs) via semantic-aligned matching for CZSL. The proposed model utilizes both semantic and visual VAEs to enhance the transfer capability of knowledge from past tasks. Leveraging generative experience replay, our model effectively combats catastrophic forgetting. Our approach was assessed on five datasets: aPY, AWA1, AWA2, CUB, and SUN, yielding superior performance to baseline models.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"160 ","pages":"Article 111199"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324009506","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Continual Zero-shot Learning (CZSL) is capable of classifying unseen categories across a sequence of tasks. However, CZSL is often plagued by the challenge of catastrophic forgetting. While recent studies have shown that preserving past data for experience replay can effectively address this issue, it may be limited to specific scenarios and pose a risk of data leakage. Additionally, many existing CZSL models fail to adequately highlight the correlation between semantic and visual features. To tackle these shortcomings, we introduce dynamic Variational Autoencoders (VAEs) via semantic-aligned matching for CZSL. The proposed model utilizes both semantic and visual VAEs to enhance the transfer capability of knowledge from past tasks. Leveraging generative experience replay, our model effectively combats catastrophic forgetting. Our approach was assessed on five datasets: aPY, AWA1, AWA2, CUB, and SUN, yielding superior performance to baseline models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过语义对齐匹配实现动态 VAE,实现持续的零镜头学习
连续零点学习(CZSL)能够对一系列任务中未见的类别进行分类。然而,CZSL 经常受到灾难性遗忘的困扰。虽然最近的研究表明,保留过去的数据进行经验重放可以有效解决这一问题,但它可能仅限于特定场景,并会带来数据泄露的风险。此外,许多现有的 CZSL 模型未能充分突出语义和视觉特征之间的相关性。为了解决这些不足,我们通过语义对齐匹配为 CZSL 引入了动态变异自动编码器(VAE)。所提出的模型利用语义和视觉变异自动编码器来增强从过去任务中转移知识的能力。利用生成性经验重放,我们的模型可以有效地对抗灾难性遗忘。我们的方法在五个数据集上进行了评估:APY、AWA1、AWA2、CUB 和 SUN,结果表明其性能优于基线模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
期刊最新文献
Semantic decomposition and enhancement hashing for deep cross-modal retrieval Unsupervised evaluation for out-of-distribution detection UM-CAM: Uncertainty-weighted multi-resolution class activation maps for weakly-supervised segmentation Scalable and Adaptive Graph Neural Networks with Self-Label-Enhanced Training Diffusion-based framework for weakly-supervised temporal action localization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1