STARNet: Low-light video enhancement using spatio-temporal consistency aggregation

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Pub Date : 2024-11-16 DOI:10.1016/j.patcog.2024.111180
Zhe Wu , Zehua Sheng , Xue Zhang , Si-Yuan Cao , Runmin Zhang , Beinan Yu , Chenghao Zhang , Bailin Yang , Hui-Liang Shen
{"title":"STARNet: Low-light video enhancement using spatio-temporal consistency aggregation","authors":"Zhe Wu ,&nbsp;Zehua Sheng ,&nbsp;Xue Zhang ,&nbsp;Si-Yuan Cao ,&nbsp;Runmin Zhang ,&nbsp;Beinan Yu ,&nbsp;Chenghao Zhang ,&nbsp;Bailin Yang ,&nbsp;Hui-Liang Shen","doi":"10.1016/j.patcog.2024.111180","DOIUrl":null,"url":null,"abstract":"<div><div>In low-light environments, capturing high-quality videos is an imaging challenge due to the limited number of photons. Previous low-light enhancement approaches usually result in over-smoothed details, temporal flickers, and color deviation. We propose STARNet, an end-to-end video enhancement network that leverages temporal consistency aggregation to address these issues. We introduce a spatio-temporal consistency aggregator, which extracts structures from multiple frames in hidden space to overcome detail corruption and temporal flickers. It parameterizes neighboring frames to extract and align consistent features, and then selectively fuses consistent features to restore clear structures. To further enhance temporal consistency, we develop a local temporal consistency constraint with robustness against the warping error from motion estimation. Furthermore, we employ a normalized low-frequency color constraint to regularize the color as the normal-light condition. Extensive experimental results on real datasets show that the proposed method achieves better detail fidelity, color accuracy, and temporal consistency, outperforming state-of-the-art approaches.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"160 ","pages":"Article 111180"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324009312","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In low-light environments, capturing high-quality videos is an imaging challenge due to the limited number of photons. Previous low-light enhancement approaches usually result in over-smoothed details, temporal flickers, and color deviation. We propose STARNet, an end-to-end video enhancement network that leverages temporal consistency aggregation to address these issues. We introduce a spatio-temporal consistency aggregator, which extracts structures from multiple frames in hidden space to overcome detail corruption and temporal flickers. It parameterizes neighboring frames to extract and align consistent features, and then selectively fuses consistent features to restore clear structures. To further enhance temporal consistency, we develop a local temporal consistency constraint with robustness against the warping error from motion estimation. Furthermore, we employ a normalized low-frequency color constraint to regularize the color as the normal-light condition. Extensive experimental results on real datasets show that the proposed method achieves better detail fidelity, color accuracy, and temporal consistency, outperforming state-of-the-art approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STARNet:利用时空一致性聚合增强低照度视频效果
在弱光环境下,由于光子数量有限,拍摄高质量视频是一项成像挑战。以往的弱光增强方法通常会导致细节过度平滑、时间闪烁和色彩偏差。我们提出的 STARNet 是一种端到端视频增强网络,它利用时间一致性聚合来解决这些问题。我们引入了一种时空一致性聚合器,它能从隐藏空间的多个帧中提取结构,以克服细节破坏和时间闪烁。它对相邻帧进行参数化,以提取和对齐一致的特征,然后选择性地融合一致的特征,以恢复清晰的结构。为了进一步增强时间一致性,我们开发了一种局部时间一致性约束,它对运动估计产生的翘曲误差具有鲁棒性。此外,我们还采用了归一化低频颜色约束来规范正常光照条件下的颜色。在真实数据集上进行的大量实验结果表明,所提出的方法在细节保真度、色彩准确度和时间一致性方面都有较好的表现,优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
期刊最新文献
A closer look at the explainability of Contrastive language-image pre-training Variable multi-scale attention fusion network and adaptive correcting gradient optimization for multi-task learning HiPPO: Enhancing proximal policy optimization with highlight replay TFDNet: Time–Frequency enhanced Decomposed Network for long-term time series forecasting GASC-Net: A Geospatial information-assisted network for ship classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1