Pseudo-variance quasi-maximum likelihood estimation of semi-parametric time series models

IF 9.9 3区 经济学 Q1 ECONOMICS Journal of Econometrics Pub Date : 2024-11-01 DOI:10.1016/j.jeconom.2024.105894
Mirko Armillotta , Paolo Gorgi
{"title":"Pseudo-variance quasi-maximum likelihood estimation of semi-parametric time series models","authors":"Mirko Armillotta ,&nbsp;Paolo Gorgi","doi":"10.1016/j.jeconom.2024.105894","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a novel estimation approach for a general class of semi-parametric time series models where the conditional expectation is modeled through a parametric function. The proposed class of estimators is based on a Gaussian quasi-likelihood function and it relies on the specification of a parametric pseudo-variance that can contain parametric restrictions with respect to the conditional expectation. The specification of the pseudo-variance and the parametric restrictions follow naturally in observation-driven models with bounds in the support of the observable process, such as count processes and double-bounded time series. We derive the asymptotic properties of the estimators and a validity test for the parameter restrictions. We show that the results remain valid irrespective of the correct specification of the pseudo-variance. The key advantage of the restricted estimators is that they can achieve higher efficiency compared to alternative quasi-likelihood methods that are available in the literature. Furthermore, the testing approach can be used to build specification tests for parametric time series models. We illustrate the practical use of the methodology in a simulation study and two empirical applications featuring integer-valued autoregressive processes, where assumptions on the dispersion of the thinning operator are formally tested, and autoregressions for double-bounded data with application to a realized correlation time series.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"246 1","pages":"Article 105894"},"PeriodicalIF":9.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624002458","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel estimation approach for a general class of semi-parametric time series models where the conditional expectation is modeled through a parametric function. The proposed class of estimators is based on a Gaussian quasi-likelihood function and it relies on the specification of a parametric pseudo-variance that can contain parametric restrictions with respect to the conditional expectation. The specification of the pseudo-variance and the parametric restrictions follow naturally in observation-driven models with bounds in the support of the observable process, such as count processes and double-bounded time series. We derive the asymptotic properties of the estimators and a validity test for the parameter restrictions. We show that the results remain valid irrespective of the correct specification of the pseudo-variance. The key advantage of the restricted estimators is that they can achieve higher efficiency compared to alternative quasi-likelihood methods that are available in the literature. Furthermore, the testing approach can be used to build specification tests for parametric time series models. We illustrate the practical use of the methodology in a simulation study and two empirical applications featuring integer-valued autoregressive processes, where assumptions on the dispersion of the thinning operator are formally tested, and autoregressions for double-bounded data with application to a realized correlation time series.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半参数时间序列模型的伪方差准极大似然估计
我们为一类半参数时间序列模型提出了一种新的估计方法,在这类模型中,条件期望是通过参数函数建模的。所提出的这一类估计方法基于高斯准似然比函数,它依赖于参数伪方差的指定,而参数伪方差可以包含与条件期望相关的参数限制。伪方差的规范和参数限制自然地遵循在可观测过程的支持中有界的观测驱动模型,如计数过程和双界时间序列。我们推导了估计量的渐近特性和参数限制的有效性检验。我们证明,无论伪方差的规范是否正确,结果仍然有效。限制估计器的主要优势在于,与文献中的其他准似然法相比,它们可以实现更高的效率。此外,该检验方法还可用于建立参数时间序列模型的规格检验。我们在一项模拟研究和两个经验应用中说明了该方法的实际应用:整数值自回归过程,其中对稀疏算子的离散性假设进行了正式检验;双约束数据的自回归,并应用于已实现的相关时间序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
期刊最新文献
GLS under monotone heteroskedasticity Multivariate spatiotemporal models with low rank coefficient matrix Estimating and testing for smooth structural changes in moment condition models Validating approximate slope homogeneity in large panels Pseudo-variance quasi-maximum likelihood estimation of semi-parametric time series models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1