Two-dimensional single-layer ferrimagnetic TiMnX2 and TiCoX2: First-principles calculations and Monte Carlo simulations

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER Physica B-condensed Matter Pub Date : 2024-11-20 DOI:10.1016/j.physb.2024.416740
Xin-Lu Song , Wen-Chao Huang , Xiao-Fang Wang , Xiang-Hu Wang , Xiao-Shuang Chen , Yun-Xia Li
{"title":"Two-dimensional single-layer ferrimagnetic TiMnX2 and TiCoX2: First-principles calculations and Monte Carlo simulations","authors":"Xin-Lu Song ,&nbsp;Wen-Chao Huang ,&nbsp;Xiao-Fang Wang ,&nbsp;Xiang-Hu Wang ,&nbsp;Xiao-Shuang Chen ,&nbsp;Yun-Xia Li","doi":"10.1016/j.physb.2024.416740","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional single-layer intrinsic magnetic materials have the characteristics of high surface activity and easy regulation, making them a popular material in current spintronics. This article uses density functional theory (DFT) to systematically study the two-dimensional monolayer TiMnX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> (X=S, Se) and TiCoX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> (X=S, Te). All structures are stable and 100% spin-polarized. Based on the Heisenberg model, combined with interaction parameters and magnetic anisotropy energy, we used the Monte Carlo method to calculate the Neel temperatures of two-dimensional single-layer TiMnX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and TiCoX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, which were 240 K, 280 K, 100 K, and 180 K, respectively. Finally, strain control was applied to these four materials, and the materials’ half-metallicity and Neel temperature changes under lattice deformation conditions were calculated. Among them, TiMnX<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> (X=S, Se) two materials had Neel temperatures higher than 300 K (room temperature) under 3% deformation. These findings provide four competitive ferrimagnetic candidate materials for single-layer spintronics materials.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"698 ","pages":"Article 416740"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452624010810","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional single-layer intrinsic magnetic materials have the characteristics of high surface activity and easy regulation, making them a popular material in current spintronics. This article uses density functional theory (DFT) to systematically study the two-dimensional monolayer TiMnX2 (X=S, Se) and TiCoX2 (X=S, Te). All structures are stable and 100% spin-polarized. Based on the Heisenberg model, combined with interaction parameters and magnetic anisotropy energy, we used the Monte Carlo method to calculate the Neel temperatures of two-dimensional single-layer TiMnX2 and TiCoX2, which were 240 K, 280 K, 100 K, and 180 K, respectively. Finally, strain control was applied to these four materials, and the materials’ half-metallicity and Neel temperature changes under lattice deformation conditions were calculated. Among them, TiMnX2 (X=S, Se) two materials had Neel temperatures higher than 300 K (room temperature) under 3% deformation. These findings provide four competitive ferrimagnetic candidate materials for single-layer spintronics materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维单层铁磁性 TiMnX2 和 TiCoX2:第一性原理计算和蒙特卡罗模拟
二维单层本征磁性材料具有表面活性高、易于调控等特点,是当前自旋电子学中的热门材料。本文利用密度泛函理论(DFT)系统研究了二维单层 TiMnX2(X=S,Se)和 TiCoX2(X=S,Te)。所有结构都很稳定,并具有 100% 的自旋极性。根据海森堡模型,结合相互作用参数和磁各向异性能,我们使用蒙特卡罗方法计算了二维单层 TiMnX2 和 TiCoX2 的 Neel 温度,分别为 240 K、280 K、100 K 和 180 K。最后,对这四种材料进行了应变控制,并计算了材料在晶格形变条件下的半金属性和 Neel 温度变化。其中,TiMnX2(X=S,Se)和 TiMnX2(X=S,Se)两种材料在 3% 变形条件下的 Neel 温度高于 300 K(室温)。这些发现为单层自旋电子材料提供了四种具有竞争力的铁磁性候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
期刊最新文献
Microstructural, optical, and impedance studies of porous Mn-α-Fe2O3/CuO/Ag heterostructures grown using solution-based methods Effects of film thickness on the superconductivity of LaSi2(00l)/Si(100) films Heusler-based topological quantum catalyst Fe2VAl with obstructed surface states for the hydrogen-evolution reaction Synthetically modified mixed phase inverse spinel CuFe2O4 magnetic nanoparticles: Structure, physical, and electrochemical properties for photocatalytic applications Polarization-independent ultranarrow ultraviolet graphene perfect absorption for temperature controlled high-performance optical switch
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1