Muhammad Siddique Afridi , Abdul salam , Sher Ali , Sumaira , Willian César Terra , Baber Ali , Muhammad Atif Muneer , Gustavo Santoyo
{"title":"Harmonizing traditional and biotechnological approaches to engineer crop microbiomes: Enhancing resilience optimization","authors":"Muhammad Siddique Afridi , Abdul salam , Sher Ali , Sumaira , Willian César Terra , Baber Ali , Muhammad Atif Muneer , Gustavo Santoyo","doi":"10.1016/j.bcab.2024.103433","DOIUrl":null,"url":null,"abstract":"<div><div>Plants are constantly confronted with both abiotic and biotic stresses, significantly affecting plant growth, development, and ultimately reducing crop yield. These complex and dynamic stress factors constitute a significant challenge to global food security. Harnessing plant-associated microbiomes represents a key strategy for enhancing agricultural sustainability. In the current era, the field of plant microbiome engineering has acquired significant attention and holds vast potential to revolutionize novel agricultural management practices. Yet, many studies have primarily focused on addressing individual stressors, leaving the intricate interactions largely unexplored. Therefore, this work inquires into the classical and biotechnological and/or ¨omic¨ techniques to engineer plant microbiomes to overcome multiple stressors. Traditional methods such as soil amendments, selective substrates and organic agricultural practices for plant microbiome engineering, are evaluated. Other more direct and advanced multi-omics approaches, such as computational and synthetic biology, host genome manipulation, microbiome breeding and microbiome transplantation, are discussed. The combined effects of pathogen infections and abiotic stresses, with particular emphasis on drought stress, are also reviewed. In addition, the imperative role of plant-growth-promoting microorganisms (PGPM) as part of the resilient plant microbiome is also highlighted. Lastly, this work sheds light on the interplay between different organic agricultural and high-throughput advanced strategies, with the final goal of reshaping the plant microbiome and pave the way for sustainable agricultural practices.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":"62 ","pages":"Article 103433"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and agricultural biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878818124004171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plants are constantly confronted with both abiotic and biotic stresses, significantly affecting plant growth, development, and ultimately reducing crop yield. These complex and dynamic stress factors constitute a significant challenge to global food security. Harnessing plant-associated microbiomes represents a key strategy for enhancing agricultural sustainability. In the current era, the field of plant microbiome engineering has acquired significant attention and holds vast potential to revolutionize novel agricultural management practices. Yet, many studies have primarily focused on addressing individual stressors, leaving the intricate interactions largely unexplored. Therefore, this work inquires into the classical and biotechnological and/or ¨omic¨ techniques to engineer plant microbiomes to overcome multiple stressors. Traditional methods such as soil amendments, selective substrates and organic agricultural practices for plant microbiome engineering, are evaluated. Other more direct and advanced multi-omics approaches, such as computational and synthetic biology, host genome manipulation, microbiome breeding and microbiome transplantation, are discussed. The combined effects of pathogen infections and abiotic stresses, with particular emphasis on drought stress, are also reviewed. In addition, the imperative role of plant-growth-promoting microorganisms (PGPM) as part of the resilient plant microbiome is also highlighted. Lastly, this work sheds light on the interplay between different organic agricultural and high-throughput advanced strategies, with the final goal of reshaping the plant microbiome and pave the way for sustainable agricultural practices.
期刊介绍:
Biocatalysis and Agricultural Biotechnology is the official journal of the International Society of Biocatalysis and Agricultural Biotechnology (ISBAB). The journal publishes high quality articles especially in the science and technology of biocatalysis, bioprocesses, agricultural biotechnology, biomedical biotechnology, and, if appropriate, from other related areas of biotechnology. The journal will publish peer-reviewed basic and applied research papers, authoritative reviews, and feature articles. The scope of the journal encompasses the research, industrial, and commercial aspects of biotechnology, including the areas of: biocatalysis; bioprocesses; food and agriculture; genetic engineering; molecular biology; healthcare and pharmaceuticals; biofuels; genomics; nanotechnology; environment and biodiversity; and bioremediation.