Mimicking Scaffolds for Osteogenesis Based on Poly(vinyl alcohol) Hydrogel with Hard Calcium Phosphate and Soft Silk Fibroin Particle for Bone Regeneration: Molecular Organization, Morphology, Properties, and In Vitro Evaluation.
Dan Zhao, Jirut Meesane, Thongchai Nuntanaranont, Nuttawut Thuaksubun, Matthana Khangkhamano
{"title":"Mimicking Scaffolds for Osteogenesis Based on Poly(vinyl alcohol) Hydrogel with Hard Calcium Phosphate and Soft Silk Fibroin Particle for Bone Regeneration: Molecular Organization, Morphology, Properties, and In Vitro Evaluation.","authors":"Dan Zhao, Jirut Meesane, Thongchai Nuntanaranont, Nuttawut Thuaksubun, Matthana Khangkhamano","doi":"10.1021/acsabm.4c00897","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, poly(vinyl alcohol) (PVA)/silk fibroin particle (SFP) hydrogel scaffolds are prepared by mixing compound calcium phosphate (CCP) in different weight ratios (0, 4, 8, and 16%) via the repeated freeze-thawing method. The physicochemical characteristics and biological behavior of the hydrogel are evaluated, and the results show a decreased porous structure of the hydrogel composite with a swelling ability upon CCP addition; however, the mechanical strength and degradation rate increase. Cell attachment and growth analyses demonstrate PVA/SFP/CCP as nontoxic to cells. Furthermore, osteogenesis evaluation shows that the group with 8% CCP in PVA/SFP hydrogel exhibits higher cell adhesion and proliferation than other groups. Additionally, the group exhibits better osteogenic performance than the other groups when alkaline phosphatase activity, total protein content, and calcium deposition are compared. Considered as a mixture, the PVA/SFP/CCP hydrogel is promising for bone tissue engineering applications; particularly, PVA/SFP/8% CCP serves as an optimal choice.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"8212-8222"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c00897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, poly(vinyl alcohol) (PVA)/silk fibroin particle (SFP) hydrogel scaffolds are prepared by mixing compound calcium phosphate (CCP) in different weight ratios (0, 4, 8, and 16%) via the repeated freeze-thawing method. The physicochemical characteristics and biological behavior of the hydrogel are evaluated, and the results show a decreased porous structure of the hydrogel composite with a swelling ability upon CCP addition; however, the mechanical strength and degradation rate increase. Cell attachment and growth analyses demonstrate PVA/SFP/CCP as nontoxic to cells. Furthermore, osteogenesis evaluation shows that the group with 8% CCP in PVA/SFP hydrogel exhibits higher cell adhesion and proliferation than other groups. Additionally, the group exhibits better osteogenic performance than the other groups when alkaline phosphatase activity, total protein content, and calcium deposition are compared. Considered as a mixture, the PVA/SFP/CCP hydrogel is promising for bone tissue engineering applications; particularly, PVA/SFP/8% CCP serves as an optimal choice.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.