Iolanda Ferreira, Joana Simões, João Correia, Ana Luísa Areia
{"title":"Predicting vaginal delivery after labor induction using machine learning: Development of a multivariable prediction model.","authors":"Iolanda Ferreira, Joana Simões, João Correia, Ana Luísa Areia","doi":"10.1111/aogs.14953","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Induction of labor, often used for pregnancy termination, has globally rising rates, especially in high-income countries where pregnant women present with more comorbidities. Consequently, concerns on a potential rise in cesarean section (CS) rates after induction of labor (IOL) demand for improved counseling on delivery mode within this context.</p><p><strong>Material and methods: </strong>We aim to develop a prognostic model for predicting vaginal delivery after labor induction using computational learning. Secondary aims include elaborating a prognostic model for CS due to abnormal fetal heart rate and labor dystocia, and evaluation of these models' feature importance, using maternal clinical predictors at IOL admission. The best performing model was assessed in an independent validation data using the area under the receiver operating curve (AUROC). Internal model validation was performed using 10-fold cross-validation. Feature importance was calculated using SHAP (SHapley Additive exPlanation) values to interpret the importance of influential features. Our main outcome measures were mode of delivery after induction of labor, dichotomized as vaginal or cesarean delivery and CS indications, dichotomized as abnormal fetal heart rate and labor dystocia.</p><p><strong>Results: </strong>Our sample comprised singleton term pregnant women (n = 2434) referred for IOL to a tertiary Obstetrics center between January 2018 and December 2021. Prediction of vaginal delivery obtained good discrimination in the independent validation data (AUROC = 0.794, 95% CI 0.783-0.805), showing high positive and negative predictive values (PPV and NPV) of 0.752 and 0.793, respectively, high specificity (0.910) and sensitivity (0.766). The CS model showed an AUROC of 0.590 (95% CI 0.565-0.615) and high specificity (0.893). Sensitivity, PPV and NVP values were 0.665, 0.617, and 0.7, respectively. Labor features associated with vaginal delivery were by order of importance: Bishop score, number of previous term deliveries, maternal height, interpregnancy time interval, and previous eutocic delivery.</p><p><strong>Conclusions: </strong>This prognostic model produced a 0.794 AUROC for predicting vaginal delivery. This, coupled with knowing the features influencing this outcome, may aid providers in assessing an individual's risk of CS after IOL and provide personalized counseling.</p>","PeriodicalId":6990,"journal":{"name":"Acta Obstetricia et Gynecologica Scandinavica","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Obstetricia et Gynecologica Scandinavica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/aogs.14953","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Induction of labor, often used for pregnancy termination, has globally rising rates, especially in high-income countries where pregnant women present with more comorbidities. Consequently, concerns on a potential rise in cesarean section (CS) rates after induction of labor (IOL) demand for improved counseling on delivery mode within this context.
Material and methods: We aim to develop a prognostic model for predicting vaginal delivery after labor induction using computational learning. Secondary aims include elaborating a prognostic model for CS due to abnormal fetal heart rate and labor dystocia, and evaluation of these models' feature importance, using maternal clinical predictors at IOL admission. The best performing model was assessed in an independent validation data using the area under the receiver operating curve (AUROC). Internal model validation was performed using 10-fold cross-validation. Feature importance was calculated using SHAP (SHapley Additive exPlanation) values to interpret the importance of influential features. Our main outcome measures were mode of delivery after induction of labor, dichotomized as vaginal or cesarean delivery and CS indications, dichotomized as abnormal fetal heart rate and labor dystocia.
Results: Our sample comprised singleton term pregnant women (n = 2434) referred for IOL to a tertiary Obstetrics center between January 2018 and December 2021. Prediction of vaginal delivery obtained good discrimination in the independent validation data (AUROC = 0.794, 95% CI 0.783-0.805), showing high positive and negative predictive values (PPV and NPV) of 0.752 and 0.793, respectively, high specificity (0.910) and sensitivity (0.766). The CS model showed an AUROC of 0.590 (95% CI 0.565-0.615) and high specificity (0.893). Sensitivity, PPV and NVP values were 0.665, 0.617, and 0.7, respectively. Labor features associated with vaginal delivery were by order of importance: Bishop score, number of previous term deliveries, maternal height, interpregnancy time interval, and previous eutocic delivery.
Conclusions: This prognostic model produced a 0.794 AUROC for predicting vaginal delivery. This, coupled with knowing the features influencing this outcome, may aid providers in assessing an individual's risk of CS after IOL and provide personalized counseling.
期刊介绍:
Published monthly, Acta Obstetricia et Gynecologica Scandinavica is an international journal dedicated to providing the very latest information on the results of both clinical, basic and translational research work related to all aspects of women’s health from around the globe. The journal regularly publishes commentaries, reviews, and original articles on a wide variety of topics including: gynecology, pregnancy, birth, female urology, gynecologic oncology, fertility and reproductive biology.