Cardio-Lipotoxicity of Epicardial Adipose Tissue.

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Biomolecules Pub Date : 2024-11-18 DOI:10.3390/biom14111465
Monica L Bodenstab, Ron T Varghese, Gianluca Iacobellis
{"title":"Cardio-Lipotoxicity of Epicardial Adipose Tissue.","authors":"Monica L Bodenstab, Ron T Varghese, Gianluca Iacobellis","doi":"10.3390/biom14111465","DOIUrl":null,"url":null,"abstract":"<p><p>Epicardial adipose tissue is a unique visceral adipose tissue depot that plays a crucial role in myocardial metabolism. Epicardial adipose tissue is a major source of energy and free fatty acids for the adjacent myocardium. However, under pathological conditions, epicardial fat can affect the heart through the excessive and abnormal influx of lipids. The cardio-lipotoxicity of the epicardial adipose tissue is complex and involves different pathways, such as increased inflammation, the infiltration of lipid intermediates such as diacylglycerol and ceramides, mitochondrial dysfunction, and oxidative stress, ultimately leading to cardiomyocyte dysfunction and coronary artery ischemia. These changes can contribute to the pathogenesis of various cardio-metabolic diseases including atrial fibrillation, coronary artery disease, heart failure, and obstructive sleep apnea. Hence, the role of the cardio-lipotoxicity of epicardial fat and its clinical implications are discussed in this review.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"14 11","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591820/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom14111465","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Epicardial adipose tissue is a unique visceral adipose tissue depot that plays a crucial role in myocardial metabolism. Epicardial adipose tissue is a major source of energy and free fatty acids for the adjacent myocardium. However, under pathological conditions, epicardial fat can affect the heart through the excessive and abnormal influx of lipids. The cardio-lipotoxicity of the epicardial adipose tissue is complex and involves different pathways, such as increased inflammation, the infiltration of lipid intermediates such as diacylglycerol and ceramides, mitochondrial dysfunction, and oxidative stress, ultimately leading to cardiomyocyte dysfunction and coronary artery ischemia. These changes can contribute to the pathogenesis of various cardio-metabolic diseases including atrial fibrillation, coronary artery disease, heart failure, and obstructive sleep apnea. Hence, the role of the cardio-lipotoxicity of epicardial fat and its clinical implications are discussed in this review.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心外膜脂肪组织的心肌脂肪毒性
心外膜脂肪组织是一种独特的内脏脂肪组织库,在心肌代谢中起着至关重要的作用。心外膜脂肪组织是邻近心肌能量和游离脂肪酸的主要来源。然而,在病理条件下,心外膜脂肪会通过过量和异常的脂质流入影响心脏。心外膜脂肪组织对心脏的脂毒性是复杂的,涉及不同的途径,如炎症加剧、二酰甘油和神经酰胺等脂质中间产物的渗入、线粒体功能障碍和氧化应激,最终导致心肌细胞功能障碍和冠状动脉缺血。这些变化可导致各种心脏代谢疾病的发病,包括心房颤动、冠心病、心力衰竭和阻塞性睡眠呼吸暂停。因此,本综述讨论了心外膜脂肪的心肌脂毒性作用及其临床意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Research Progress of Fibroblasts in Human Diseases. Insulin-like Growth Factor-Binding Protein-1 (IGFBP-1) as a Biomarker of Cardiovascular Disease. Anti-Diabetic Therapies and Cancer: From Bench to Bedside. Metabolites and Metabolic Functional Changes-Potential Markers for Endothelial Cell Senescence. Supplementation of Oocytes by Microinjection with Extra Copies of mtDNA Alters Metabolite Profiles and Interactions with Expressed Genes in a Tissue-Specific Manner.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1