Action-At-A-Distance in DNA Mismatch Repair: Mechanistic Insights and Models for How DNA and Repair Proteins Facilitate Long-Range Communication.

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Biomolecules Pub Date : 2024-11-13 DOI:10.3390/biom14111442
Bryce W Collingwood, Scott J Witte, Carol M Manhart
{"title":"Action-At-A-Distance in DNA Mismatch Repair: Mechanistic Insights and Models for How DNA and Repair Proteins Facilitate Long-Range Communication.","authors":"Bryce W Collingwood, Scott J Witte, Carol M Manhart","doi":"10.3390/biom14111442","DOIUrl":null,"url":null,"abstract":"<p><p>Many DNA metabolic pathways, including DNA repair, require the transmission of signals across long stretches of DNA or between DNA molecules. Solutions to this signaling challenge involve various mechanisms: protein factors can travel between these sites, loop DNA between sites, or form oligomers that bridge the spatial gaps. This review provides an overview of how these paradigms have been used to explain DNA mismatch repair, which involves several steps that require action-at-a-distance. Here, we describe these models in detail and how current data fit into these descriptions. We also outline regulation steps that remain unanswered in how the action is communicated across long distances along a DNA contour in DNA mismatch repair.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"14 11","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592386/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom14111442","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Many DNA metabolic pathways, including DNA repair, require the transmission of signals across long stretches of DNA or between DNA molecules. Solutions to this signaling challenge involve various mechanisms: protein factors can travel between these sites, loop DNA between sites, or form oligomers that bridge the spatial gaps. This review provides an overview of how these paradigms have been used to explain DNA mismatch repair, which involves several steps that require action-at-a-distance. Here, we describe these models in detail and how current data fit into these descriptions. We also outline regulation steps that remain unanswered in how the action is communicated across long distances along a DNA contour in DNA mismatch repair.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DNA 错配修复中的远距离作用:DNA 和修复蛋白如何促进远距离通信的机理认识和模型》(Mechanistic Insights and Models for How DNA and Repair Proteins Facilitate Long-Range Communication.
包括 DNA 修复在内的许多 DNA 新陈代谢途径都需要在绵长的 DNA 上或 DNA 分子之间传递信号。解决这一信号传递难题的方法涉及多种机制:蛋白质因子可以在这些位点之间移动、在位点之间环绕 DNA 或形成寡聚体来弥合空间间隙。本综述概述了如何利用这些范式来解释 DNA 错配修复,其中涉及多个需要远距离作用的步骤。在此,我们将详细描述这些模型,以及当前数据如何与这些描述相吻合。我们还概述了在 DNA 错配修复过程中,如何沿着 DNA 轮廓远距离传递作用的调节步骤,这些步骤仍是未解之谜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Research Progress of Fibroblasts in Human Diseases. Insulin-like Growth Factor-Binding Protein-1 (IGFBP-1) as a Biomarker of Cardiovascular Disease. Anti-Diabetic Therapies and Cancer: From Bench to Bedside. Metabolites and Metabolic Functional Changes-Potential Markers for Endothelial Cell Senescence. Supplementation of Oocytes by Microinjection with Extra Copies of mtDNA Alters Metabolite Profiles and Interactions with Expressed Genes in a Tissue-Specific Manner.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1