Lara C Avsharian, Suvithanandhini Loganathan, Nancy D Ebelt, Azadeh F Shalamzari, Itzel Rodarte Muñoz, Edwin R Manuel
{"title":"Tumor-Colonizing <i>E. coli</i> Expressing Both Collagenase and Hyaluronidase Enhances Therapeutic Efficacy of Gemcitabine in Pancreatic Cancer Models.","authors":"Lara C Avsharian, Suvithanandhini Loganathan, Nancy D Ebelt, Azadeh F Shalamzari, Itzel Rodarte Muñoz, Edwin R Manuel","doi":"10.3390/biom14111458","DOIUrl":null,"url":null,"abstract":"<p><p>Desmoplasia is a hallmark feature of pancreatic ductal adenocarcinoma (PDAC) that contributes significantly to treatment resistance. Approaches to enhance drug delivery into fibrotic PDAC tumors continue to be an important unmet need. In this study, we have engineered a tumor-colonizing <i>E. coli</i>-based agent that expresses both collagenase and hyaluronidase as a strategy to reduce desmoplasia and enhance the intratumoral perfusion of anticancer agents. Overall, we observed that the tandem expression of both these enzymes by tumor-colonizing <i>E. coli</i> resulted in the reduced presence of intratumoral collagen and hyaluronan, which likely contributed to the enhanced chemotherapeutic efficacy observed when used in combination. These results highlight the importance of combination treatments involving the depletion of desmoplastic components in PDAC before or during treatment.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"14 11","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591662/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom14111458","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Desmoplasia is a hallmark feature of pancreatic ductal adenocarcinoma (PDAC) that contributes significantly to treatment resistance. Approaches to enhance drug delivery into fibrotic PDAC tumors continue to be an important unmet need. In this study, we have engineered a tumor-colonizing E. coli-based agent that expresses both collagenase and hyaluronidase as a strategy to reduce desmoplasia and enhance the intratumoral perfusion of anticancer agents. Overall, we observed that the tandem expression of both these enzymes by tumor-colonizing E. coli resulted in the reduced presence of intratumoral collagen and hyaluronan, which likely contributed to the enhanced chemotherapeutic efficacy observed when used in combination. These results highlight the importance of combination treatments involving the depletion of desmoplastic components in PDAC before or during treatment.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.