Reprogramming of Expanded Cord Blood-Derived CD34+ Cells from Umbilical Cord-Mesenchymal Stromal Cell Co-Culture to Generate Human-Induced Pluripotent Stem Cells.

IF 1.2 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Cellular reprogramming Pub Date : 2024-11-27 DOI:10.1089/cell.2024.0073
Fatin Fazrina Roslan, Yuexin Yu, Mengmeng Wang, Nurul Ain Nasim Mohd Yusof, Ghee Chien Ooi, Khong Lek Then, Kong Yong Then, Soon-Keng Cheong, Mohd Nor Azim Ab Patar, Jun Jie Tan
{"title":"Reprogramming of Expanded Cord Blood-Derived CD34<sup><b>+</b></sup> Cells from Umbilical Cord-Mesenchymal Stromal Cell Co-Culture to Generate Human-Induced Pluripotent Stem Cells.","authors":"Fatin Fazrina Roslan, Yuexin Yu, Mengmeng Wang, Nurul Ain Nasim Mohd Yusof, Ghee Chien Ooi, Khong Lek Then, Kong Yong Then, Soon-Keng Cheong, Mohd Nor Azim Ab Patar, Jun Jie Tan","doi":"10.1089/cell.2024.0073","DOIUrl":null,"url":null,"abstract":"<p><p>Cord blood (CB) is widely stored as a source of hematopoietic stem cells for potential future use, though its application for autologous purposes remains limited. Repurposing CB into human-induced pluripotent stem cells (hiPSCs) can broaden its utility beyond hematological conditions. This study investigated the effects of umbilical cord-mesenchymal stromal cell (UC-MSC) co-culture on CB CD34<sup>+</sup> cells and the characteristics of the resulting hiPSCs. CD34<sup>+</sup> cells were isolated, expanded in UC-MSC co-culture for 3 days, and reprogrammed into hiPSCs using episomal vectors. Results showed that UC-MSC co-culture significantly increased CD34<sup>+</sup> cell numbers (<i>p</i> < 0.0001, <i>n</i> = 6), with a reduced population doubling time of 25.1 ± 2.1 hours compared with the control (<i>p</i> < 0.0004, <i>n</i> = 6). The yield of CD34<sup>+</sup> cells was substantially higher in the UC-MSC co-culture group. The hiPSCs exhibited comparable reprogramming efficiency, pluripotency marker expression, trilineage differentiation potential, and genomic stability to CD34<sup>+</sup> cells expanded under standard culture conditions. These findings suggest that CD34<sup>+</sup> cells from CB, expanded in UC-MSC co-culture, can be reprogrammed into functional hiPSCs without compromising cell quality or genetic stability.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular reprogramming","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cell.2024.0073","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cord blood (CB) is widely stored as a source of hematopoietic stem cells for potential future use, though its application for autologous purposes remains limited. Repurposing CB into human-induced pluripotent stem cells (hiPSCs) can broaden its utility beyond hematological conditions. This study investigated the effects of umbilical cord-mesenchymal stromal cell (UC-MSC) co-culture on CB CD34+ cells and the characteristics of the resulting hiPSCs. CD34+ cells were isolated, expanded in UC-MSC co-culture for 3 days, and reprogrammed into hiPSCs using episomal vectors. Results showed that UC-MSC co-culture significantly increased CD34+ cell numbers (p < 0.0001, n = 6), with a reduced population doubling time of 25.1 ± 2.1 hours compared with the control (p < 0.0004, n = 6). The yield of CD34+ cells was substantially higher in the UC-MSC co-culture group. The hiPSCs exhibited comparable reprogramming efficiency, pluripotency marker expression, trilineage differentiation potential, and genomic stability to CD34+ cells expanded under standard culture conditions. These findings suggest that CD34+ cells from CB, expanded in UC-MSC co-culture, can be reprogrammed into functional hiPSCs without compromising cell quality or genetic stability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从脐带-间质基质细胞共培养中对扩增的脐带血CD34+细胞进行重编程,以生成人类诱导多能干细胞。
脐带血(CB)作为造血干细胞来源被广泛储存,以备将来使用,但其自体应用仍然有限。将脐带血转化为人类诱导多能干细胞(hiPSCs)可扩大其在血液病以外的用途。本研究调查了脐带-间充质干细胞(UC-MSC)共培养对CB CD34+细胞的影响以及所产生的hiPSCs的特征。研究人员分离了CD34+细胞,在UC-间充质干细胞共培养中扩增了3天,并使用外显子载体将其重新编程为hiPSCs。结果显示,UC-间充质干细胞共培养能显著增加 CD34+ 细胞数量(p < 0.0001,n = 6),与对照组相比,细胞群倍增时间缩短为 25.1 ± 2.1 小时(p < 0.0004,n = 6)。UC-间充质干细胞共培养组的 CD34+ 细胞产量大大高于对照组。hiPSCs的重编程效率、多能性标记表达、三系分化潜能和基因组稳定性与在标准培养条件下扩增的CD34+细胞相当。这些发现表明,在 UC 间充质干细胞共培养条件下扩增的 CB CD34+ 细胞可以重编程为功能性 hiPSCs,而不会影响细胞质量或基因稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellular reprogramming
Cellular reprogramming CELL & TISSUE ENGINEERING-BIOTECHNOLOGY & APPLIED MICROBIOLOGY
CiteScore
2.50
自引率
6.20%
发文量
37
审稿时长
3 months
期刊介绍: Cellular Reprogramming is the premier journal dedicated to providing new insights on the etiology, development, and potential treatment of various diseases through reprogramming cellular mechanisms. The Journal delivers information on cutting-edge techniques and the latest high-quality research and discoveries that are transforming biomedical research. Cellular Reprogramming coverage includes: Somatic cell nuclear transfer and reprogramming in early embryos Embryonic stem cells Nuclear transfer stem cells (stem cells derived from nuclear transfer embryos) Generation of induced pluripotent stem (iPS) cells and/or potential for cell-based therapies Epigenetics Adult stem cells and pluripotency.
期刊最新文献
Protective Effect and Molecular Mechanism of Mesenchymal Stem Cell-Derived Extracellular Vesicles in Diabetic Foot Ulcers. Reprogramming of Expanded Cord Blood-Derived CD34+ Cells from Umbilical Cord-Mesenchymal Stromal Cell Co-Culture to Generate Human-Induced Pluripotent Stem Cells. Reprogramming Stars #19: Upgrading Cell Fate Conversions with Engineered Reprogramming Factors-An Interview with Dr. Ralf Jauch. Transplantation of Human Induced Pluripotent Stem Cell-Derived Airway Epithelia at Different Induction Stages into Nude Rat. Reaching the Holy Grail: Making hematopoietic stem cells in a Dish.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1