Radiologists Versus AI-Based Software: Predicting Lymph Node Metastasis and Prognosis in Lung Adenocarcinoma From CT Under Various Image Display Conditions

IF 3.3 3区 医学 Q2 ONCOLOGY Clinical lung cancer Pub Date : 2025-01-01 DOI:10.1016/j.cllc.2024.10.015
Junya Sato , Masahiro Yanagawa , Daiki Nishigaki , Akinori Hata , Yukinori Sakao , Noriaki Sakakura , Yasushi Yatabe , Yasushi Shintani , Shoji Kido , Noriyuki Tomiyama
{"title":"Radiologists Versus AI-Based Software: Predicting Lymph Node Metastasis and Prognosis in Lung Adenocarcinoma From CT Under Various Image Display Conditions","authors":"Junya Sato ,&nbsp;Masahiro Yanagawa ,&nbsp;Daiki Nishigaki ,&nbsp;Akinori Hata ,&nbsp;Yukinori Sakao ,&nbsp;Noriaki Sakakura ,&nbsp;Yasushi Yatabe ,&nbsp;Yasushi Shintani ,&nbsp;Shoji Kido ,&nbsp;Noriyuki Tomiyama","doi":"10.1016/j.cllc.2024.10.015","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>To compare the variability of quantitative values from lung adenocarcinoma CT images independently assessed by 2 radiologists and AI-based software under different display conditions, and to identify predictors of pathological lymph node metastasis (LNM), disease-free survival (DFS), and overall survival (OS).</div></div><div><h3>Methods</h3><div>Preoperative CT images of 307 patients were displayed under 4 conditions: lung-1, lung-2, mediastinum-1, and mediastinum-2. Two radiologists (R1, R2) measured total diameter (tD) and the longest solid diameter (sD) under each condition. The AI-based software automatically detected lung nodules, providing tD, sD, total volume (tV), and solid volume (sV).</div></div><div><h3>Results</h3><div>All measurements by R1 and R2 with AI-based software were identical. Four out of the 8 measurements showed significant variation between R1 and R2. For LNM, multivariate logistic regression identified significant indicators including sD at mediastinum-2 of R1, sD at mediastinum-1 and mediastinum-2 of R2, tV, and the proportion of sV to tV (sV/tV) of AI-based software. For DFS, multivariate Cox regression identified sD at lung-1 of R1, the proportions of sD to tD at lung-2 of R1, sD at lung-2 and mediastinum-1 of R2, tV, and sV/tV of AI-based software as significant. For OS, multivariate Cox regression identified sD at lung-1 and mediastinum-2 of R1, tD at lung-2 of R2, sD at mediastinum-1 of R2, sV, and sV/tV of AI-based software as significant.</div></div><div><h3>Conclusion</h3><div>Radiologists’ CT measurements were significant predictors of LNM and prognosis, but variability existed among radiologists and display conditions. AI-based software can provide accurate and reproducible indicators for predicting LNM and prognosis.</div></div>","PeriodicalId":10490,"journal":{"name":"Clinical lung cancer","volume":"26 1","pages":"Pages 58-71"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical lung cancer","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1525730424002328","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

To compare the variability of quantitative values from lung adenocarcinoma CT images independently assessed by 2 radiologists and AI-based software under different display conditions, and to identify predictors of pathological lymph node metastasis (LNM), disease-free survival (DFS), and overall survival (OS).

Methods

Preoperative CT images of 307 patients were displayed under 4 conditions: lung-1, lung-2, mediastinum-1, and mediastinum-2. Two radiologists (R1, R2) measured total diameter (tD) and the longest solid diameter (sD) under each condition. The AI-based software automatically detected lung nodules, providing tD, sD, total volume (tV), and solid volume (sV).

Results

All measurements by R1 and R2 with AI-based software were identical. Four out of the 8 measurements showed significant variation between R1 and R2. For LNM, multivariate logistic regression identified significant indicators including sD at mediastinum-2 of R1, sD at mediastinum-1 and mediastinum-2 of R2, tV, and the proportion of sV to tV (sV/tV) of AI-based software. For DFS, multivariate Cox regression identified sD at lung-1 of R1, the proportions of sD to tD at lung-2 of R1, sD at lung-2 and mediastinum-1 of R2, tV, and sV/tV of AI-based software as significant. For OS, multivariate Cox regression identified sD at lung-1 and mediastinum-2 of R1, tD at lung-2 of R2, sD at mediastinum-1 of R2, sV, and sV/tV of AI-based software as significant.

Conclusion

Radiologists’ CT measurements were significant predictors of LNM and prognosis, but variability existed among radiologists and display conditions. AI-based software can provide accurate and reproducible indicators for predicting LNM and prognosis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
放射医师与基于人工智能的软件:在各种图像显示条件下通过 CT 预测肺腺癌的淋巴结转移和预后
目的:比较在不同显示条件下由两名放射科医生和人工智能软件独立评估的肺腺癌 CT 图像定量值的变异性,并确定病理淋巴结转移(LNM)、无病生存(DFS)和总生存(OS)的预测因素:方法:307 名患者的术前 CT 图像在 4 种条件下显示:肺-1、肺-2、纵隔-1 和纵隔-2。两名放射科医生(R1、R2)分别测量了每种情况下的总直径(tD)和最长实体直径(sD)。基于人工智能的软件自动检测肺结节,并提供 tD、sD、总体积(tV)和实变体积(sV):R1 和 R2 使用人工智能软件进行的所有测量结果均相同。在 8 项测量中,有 4 项在 R1 和 R2 之间存在显著差异。对于 LNM,多变量逻辑回归确定的重要指标包括 R1 纵隔-2 的 sD、R2 纵隔-1 和纵隔-2 的 sD、tV 以及基于 AI 软件的 sV 与 tV 的比例(sV/tV)。对于 DFS,多变量 Cox 回归确定 R1 肺-1 的 sD、R1 肺-2 的 sD 与 tD 的比例、R2 肺-2 和纵隔-1 的 sD、tV 和基于 AI 软件的 sV/tV 具有显著性。对于 OS,多变量 Cox 回归确定基于 AI 软件的 R1 肺-1 和纵隔-2 的 sD、R2 肺-2 的 tD、R2 纵隔-1 的 sD、sV 和 sV/tV 具有显著性:结论:放射科医生的 CT 测量结果可显著预测 LNM 和预后,但放射科医生和显示条件之间存在差异。基于人工智能的软件可为预测 LNM 和预后提供准确且可重复的指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Clinical lung cancer
Clinical lung cancer 医学-肿瘤学
CiteScore
7.00
自引率
2.80%
发文量
159
审稿时长
24 days
期刊介绍: Clinical Lung Cancer is a peer-reviewed bimonthly journal that publishes original articles describing various aspects of clinical and translational research of lung cancer. Clinical Lung Cancer is devoted to articles on detection, diagnosis, prevention, and treatment of lung cancer. The main emphasis is on recent scientific developments in all areas related to lung cancer. Specific areas of interest include clinical research and mechanistic approaches; drug sensitivity and resistance; gene and antisense therapy; pathology, markers, and prognostic indicators; chemoprevention strategies; multimodality therapy; and integration of various approaches.
期刊最新文献
Expanding Lung Cancer Clinical Trial Criteria: A Systematic Review on Inclusion of Patients with Brain Metastases and Leptomeningeal Disease Multicenter Real-World Data on First-Line Chemoimmunotherapy in Patients With Advanced Non-Small Cell Lung Cancer and Performance Status 2: WJOG18424L. Lung SBRT Outcomes for Inoperable Early-Stage Lung Cancer Are Impaired in Patients With Solid Organ Transplants Selpercatinib-Associated Nephropathy in RET Fusion-Positive Lung Cancer: A Case Successfully Managed With Dose Adjustment and Nephroprotective Therapy Cumulative Incidence and Type-Specific Risk Factors of Pneumonitis After Definitive Chemoradiotherapy With or Without Immunotherapy in Locally Advanced Non-Small Cell Lung Cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1