Clinically Significant Prostate Cancer Prediction Using Multimodal Deep Learning with Prostate-Specific Antigen Restriction.

IF 2.8 4区 医学 Q2 ONCOLOGY Current oncology Pub Date : 2024-11-15 DOI:10.3390/curroncol31110530
Hayato Takeda, Jun Akatsuka, Tomonari Kiriyama, Yuka Toyama, Yasushi Numata, Hiromu Morikawa, Kotaro Tsutsumi, Mami Takadate, Hiroya Hasegawa, Hikaru Mikami, Kotaro Obayashi, Yuki Endo, Takayuki Takahashi, Manabu Fukumoto, Ryuji Ohashi, Akira Shimizu, Go Kimura, Yukihiro Kondo, Yoichiro Yamamoto
{"title":"Clinically Significant Prostate Cancer Prediction Using Multimodal Deep Learning with Prostate-Specific Antigen Restriction.","authors":"Hayato Takeda, Jun Akatsuka, Tomonari Kiriyama, Yuka Toyama, Yasushi Numata, Hiromu Morikawa, Kotaro Tsutsumi, Mami Takadate, Hiroya Hasegawa, Hikaru Mikami, Kotaro Obayashi, Yuki Endo, Takayuki Takahashi, Manabu Fukumoto, Ryuji Ohashi, Akira Shimizu, Go Kimura, Yukihiro Kondo, Yoichiro Yamamoto","doi":"10.3390/curroncol31110530","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer (PCa) is a clinically heterogeneous disease. Predicting clinically significant PCa with low-intermediate prostate-specific antigen (PSA), which often includes aggressive cancers, is imperative. This study evaluated the predictive accuracy of deep learning analysis using multimodal medical data focused on clinically significant PCa in patients with PSA ≤ 20 ng/mL. Our cohort study included 178 consecutive patients who underwent ultrasound-guided prostate biopsy. Deep learning analyses were applied to predict clinically significant PCa. We generated receiver operating characteristic curves and calculated the corresponding area under the curve (AUC) to assess the prediction. The AUC of the integrated medical data using our multimodal deep learning approach was 0.878 (95% confidence interval [CI]: 0.772-0.984) in all patients without PSA restriction. Despite the reduced predictive ability of PSA when restricted to PSA ≤ 20 ng/mL (<i>n</i> = 122), the AUC was 0.862 (95% CI: 0.723-1.000), complemented by imaging data. In addition, we assessed clinical presentations and images belonging to representative false-negative and false-positive cases. Our multimodal deep learning approach assists physicians in determining treatment strategies by predicting clinically significant PCa in patients with PSA ≤ 20 ng/mL before biopsy, contributing to personalized medical workflows for PCa management.</p>","PeriodicalId":11012,"journal":{"name":"Current oncology","volume":"31 11","pages":"7180-7189"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592897/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/curroncol31110530","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Prostate cancer (PCa) is a clinically heterogeneous disease. Predicting clinically significant PCa with low-intermediate prostate-specific antigen (PSA), which often includes aggressive cancers, is imperative. This study evaluated the predictive accuracy of deep learning analysis using multimodal medical data focused on clinically significant PCa in patients with PSA ≤ 20 ng/mL. Our cohort study included 178 consecutive patients who underwent ultrasound-guided prostate biopsy. Deep learning analyses were applied to predict clinically significant PCa. We generated receiver operating characteristic curves and calculated the corresponding area under the curve (AUC) to assess the prediction. The AUC of the integrated medical data using our multimodal deep learning approach was 0.878 (95% confidence interval [CI]: 0.772-0.984) in all patients without PSA restriction. Despite the reduced predictive ability of PSA when restricted to PSA ≤ 20 ng/mL (n = 122), the AUC was 0.862 (95% CI: 0.723-1.000), complemented by imaging data. In addition, we assessed clinical presentations and images belonging to representative false-negative and false-positive cases. Our multimodal deep learning approach assists physicians in determining treatment strategies by predicting clinically significant PCa in patients with PSA ≤ 20 ng/mL before biopsy, contributing to personalized medical workflows for PCa management.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用具有前列腺特异性抗原限制的多模态深度学习预测具有临床意义的前列腺癌
前列腺癌(PCa)是一种临床异质性疾病。预测前列腺特异性抗原(PSA)处于中低水平且具有临床意义的前列腺癌(通常包括侵袭性癌症)势在必行。本研究评估了利用多模态医疗数据进行深度学习分析的预测准确性,重点是PSA≤20纳克/毫升的有临床意义的PCa患者。我们的队列研究包括 178 名连续接受超声引导前列腺活检的患者。深度学习分析被用于预测具有临床意义的PCa。我们生成了接收者操作特征曲线,并计算了相应的曲线下面积(AUC)来评估预测结果。在所有无 PSA 限制的患者中,使用我们的多模态深度学习方法整合医疗数据的 AUC 为 0.878(95% 置信区间 [CI]:0.772-0.984)。尽管 PSA 的预测能力在 PSA ≤ 20 ng/mL 时有所降低(n = 122),但在影像数据的补充下,AUC 为 0.862(95% 置信区间 [CI]:0.723-1.000)。此外,我们还评估了具有代表性的假阴性和假阳性病例的临床表现和图像。我们的多模态深度学习方法可以在活检前预测PSA≤20 ng/mL患者中具有临床意义的PCa,从而协助医生确定治疗策略,为PCa管理的个性化医疗工作流程做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current oncology
Current oncology ONCOLOGY-
CiteScore
3.30
自引率
7.70%
发文量
664
审稿时长
1 months
期刊介绍: Current Oncology is a peer-reviewed, Canadian-based and internationally respected journal. Current Oncology represents a multidisciplinary medium encompassing health care workers in the field of cancer therapy in Canada to report upon and to review progress in the management of this disease. We encourage submissions from all fields of cancer medicine, including radiation oncology, surgical oncology, medical oncology, pediatric oncology, pathology, and cancer rehabilitation and survivorship. Articles published in the journal typically contain information that is relevant directly to clinical oncology practice, and have clear potential for application to the current or future practice of cancer medicine.
期刊最新文献
Metabolic Complete Response of Metastatic Oncogene-Negative, PDL1-Negative Non-Small Cell Lung Cancer After Chemo-Immunotherapy and Radiotherapy: A Case Report. Rural Versus Urban Genitourinary Cancer Incidence and Mortality in Pennsylvania: 1990-2019. Let It Grow: The Role of Growth Factors in Managing Chemotherapy-Induced Cytopenia. A Longitudinal Multimodal Imaging Study in Patients with Temporo-Insular Diffuse Low-Grade Tumors: How the Inferior Fronto-Occipital Fasciculus Provides Information on Cognitive Outcomes. Targeting TOP2A in Ovarian Cancer: Biological and Clinical Implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1