Numerical Modeling Reveals That Resistant Western Corn Rootworm Are Stronger Fliers than Their Susceptible Conspecifics.

IF 2.7 2区 农林科学 Q1 ENTOMOLOGY Insects Pub Date : 2024-10-24 DOI:10.3390/insects15110834
Katarina M Mikac, Darija Lemic, Ivana Pajač Živković, Jose H Dominguez Davila
{"title":"Numerical Modeling Reveals That Resistant Western Corn Rootworm Are Stronger Fliers than Their Susceptible Conspecifics.","authors":"Katarina M Mikac, Darija Lemic, Ivana Pajač Živković, Jose H Dominguez Davila","doi":"10.3390/insects15110834","DOIUrl":null,"url":null,"abstract":"<p><p>The hindwing geometry, aspect ratio, and numerical modeling of susceptible, Bt-Corn- and rotation-resistant western corn rootworm (WCR) wings was investigated. All variants had similar hindwing geometries and aspect ratio (AR: 6-7). These AR values correspond to wings suited to lower altitude flights of a shorter distance. These AR values are characteristic of wings that can carry heavier loads and are capable of precision flying. Numerical modeling using the finite element method (FEM) showed that the Bt-Corn-resistant and rotation-resistant WCR hindwings could potentially resist higher wind speeds with minimal deformations compared to conspecific susceptible WCR. Understanding the physiology and dispersal of resistant WCR enables a better understanding of how these variants spread their alleles across large scale agricultural landscapes. This may have important implications for integrated resistant management strategies for WCR.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"15 11","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects15110834","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The hindwing geometry, aspect ratio, and numerical modeling of susceptible, Bt-Corn- and rotation-resistant western corn rootworm (WCR) wings was investigated. All variants had similar hindwing geometries and aspect ratio (AR: 6-7). These AR values correspond to wings suited to lower altitude flights of a shorter distance. These AR values are characteristic of wings that can carry heavier loads and are capable of precision flying. Numerical modeling using the finite element method (FEM) showed that the Bt-Corn-resistant and rotation-resistant WCR hindwings could potentially resist higher wind speeds with minimal deformations compared to conspecific susceptible WCR. Understanding the physiology and dispersal of resistant WCR enables a better understanding of how these variants spread their alleles across large scale agricultural landscapes. This may have important implications for integrated resistant management strategies for WCR.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数字模型显示,抗性西部玉米根虫比易感同种玉米根虫飞行能力更强。
研究了易感、Bt-玉米螟和抗轮作西部玉米根虫(WCR)后翅的几何形状、长宽比和数值模型。所有变体都具有相似的后翅几何形状和长宽比(AR:6-7)。这些 AR 值与适合短距离低空飞行的翅膀相对应。这些 AR 值是可承受较重负荷并能进行精确飞行的机翼的特征。使用有限元法(FEM)进行的数值建模表明,与同种易受影响的WCR相比,抗Bt-Corn和抗旋转的WCR后翅有可能以最小的变形抵抗更高的风速。了解了抗性 WCR 的生理和扩散情况,就能更好地理解这些变种如何在大规模农业景观中传播其等位基因。这可能会对 WCR 的综合抗性管理策略产生重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Insects
Insects Agricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍: Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
期刊最新文献
Biorefinery and Bioremediation Strategies for Efficient Management of Recalcitrant Pollutants Using Termites as an Obscure yet Promising Source of Bacterial Gut Symbionts: A Review. Blue Vane and Pan Traps Are More Effective for Profiling Multiple Facets of Bee Diversity in Subtropical Forests. Molecular Diversity and Distribution of Whiteflies (Bemisia tabaci) in Cassava Fields Across South West and North Central, Nigeria. Evaluation of Different Mode of Action Insecticides for the Control of Bemisia tabaci; Enhancement of Pesticide Efficacy. Toxicity of Eight Insecticides on Drosophila suzukii and Its Pupal Parasitoid Trichopria drosophilae.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1