Ning Wang, Yilin Zhu, Yijun Zhou, Fei Gao, Suxia Cui
{"title":"Transcriptome Analysis Reveals the Crucial Role of Phenylalanine Ammonia-Lyase in Low Temperature Response in <i>Ammopiptanthus mongolicus</i>.","authors":"Ning Wang, Yilin Zhu, Yijun Zhou, Fei Gao, Suxia Cui","doi":"10.3390/genes15111465","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: <i>Ammopiptanthus mongolicus</i> is a rare temperate evergreen shrub with high tolerance to low temperature, and understanding the related gene expression regulatory network can help advance research on the mechanisms of plant tolerance to abiotic stress. <b>Methods:</b> Here, time-course transcriptome analysis was applied to investigate the gene expression network in <i>A. mongolicus</i> under low temperature stress. <b>Results</b>: A total of 12,606 differentially expressed genes (DEGs) were identified at four time-points during low temperature stress treatment, and multiple pathways, such as plant hormones, secondary metabolism, and cell membranes, were significantly enriched in the DEGs. Trend analysis found that the expression level of genes in cluster 19 continued to upregulate under low temperatures, and the genes in cluster 19 were significantly enriched in plant hormone signaling and secondary metabolic pathways. Based on the transcriptome data, the expression profiles of the genes in abscisic acid, salicylic acid, and flavonoid metabolic pathways were analyzed. It was found that biosynthesis of abscisic acid and flavonoids may play crucial roles in the response to low temperature stress. Furthermore, members of the phenylalanine ammonia-lyase (PAL) family in <i>A. mongolicus</i> were systematically identified and their structures and evolution were characterized. Analysis of cis-acting elements showed that the <i>PAL</i> genes in <i>A. mongolicus</i> were closely related to abiotic stress response. Expression pattern analysis showed that <i>PAL</i> genes responded to various environmental stresses, such as low temperature, supporting their involvement in the low temperature response in <i>A. mongolicus</i>. <b>Conclusions</b>: Our study provides important data for understanding the mechanisms of tolerance to low temperatures in <i>A. mongolicus.</i></p>","PeriodicalId":12688,"journal":{"name":"Genes","volume":"15 11","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593641/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/genes15111465","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Ammopiptanthus mongolicus is a rare temperate evergreen shrub with high tolerance to low temperature, and understanding the related gene expression regulatory network can help advance research on the mechanisms of plant tolerance to abiotic stress. Methods: Here, time-course transcriptome analysis was applied to investigate the gene expression network in A. mongolicus under low temperature stress. Results: A total of 12,606 differentially expressed genes (DEGs) were identified at four time-points during low temperature stress treatment, and multiple pathways, such as plant hormones, secondary metabolism, and cell membranes, were significantly enriched in the DEGs. Trend analysis found that the expression level of genes in cluster 19 continued to upregulate under low temperatures, and the genes in cluster 19 were significantly enriched in plant hormone signaling and secondary metabolic pathways. Based on the transcriptome data, the expression profiles of the genes in abscisic acid, salicylic acid, and flavonoid metabolic pathways were analyzed. It was found that biosynthesis of abscisic acid and flavonoids may play crucial roles in the response to low temperature stress. Furthermore, members of the phenylalanine ammonia-lyase (PAL) family in A. mongolicus were systematically identified and their structures and evolution were characterized. Analysis of cis-acting elements showed that the PAL genes in A. mongolicus were closely related to abiotic stress response. Expression pattern analysis showed that PAL genes responded to various environmental stresses, such as low temperature, supporting their involvement in the low temperature response in A. mongolicus. Conclusions: Our study provides important data for understanding the mechanisms of tolerance to low temperatures in A. mongolicus.
期刊介绍:
Genes (ISSN 2073-4425) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to genes, genetics and genomics. It publishes reviews, research articles, communications and technical notes. There is no restriction on the length of the papers and we encourage scientists to publish their results in as much detail as possible.