Jacek Szczepański, Dmytro Khylyuk, Agnieszka Korga-Plewko, Mariola Michalczuk, Sławomir Mańdziuk, Magdalena Iwan, Nazar Trotsko
{"title":"Rhodanine-Piperazine Hybrids as Potential VEGFR, EGFR, and HER2 Targeting Anti-Breast Cancer Agents.","authors":"Jacek Szczepański, Dmytro Khylyuk, Agnieszka Korga-Plewko, Mariola Michalczuk, Sławomir Mańdziuk, Magdalena Iwan, Nazar Trotsko","doi":"10.3390/ijms252212401","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is one of the most common malignancies affecting women worldwide, with a significant need for novel therapeutic agents to target specific molecular pathways involved in tumor progression. In this study, a series of rhodanine-piperazine hybrids were designed, synthesized, and evaluated for their anticancer activity, targeting key tyrosine kinases such as VEGFR, EGFR, and HER2. Biological screening against breast cancer cell lines (MCF-7, MDA-MB-231, T47D, and MDA-MB-468) revealed 3 of the 13 tested compounds as the most potent, with 5-({4-[bis(4-fluorophenyl)methyl]piperazin-1-yl}methylidene)-2-thioxo-1,3-thiazolidin-4-one (<b>12</b>) showing the strongest activity, particularly against the MCF-7 and MDA-MB-468 cell lines. Molecular docking studies indicated favorable binding interactions of compound <b>12</b> and its 3-phenyl-2-thioxo-1,3-thiazolidin-4-one analogue (<b>15</b>) with HER2, VEGFR, and EGFR, and molecular dynamics simulations further confirmed their stable binding to HER2. These findings highlight the potential of rhodanine-piperazine hybrids as promising leads for developing new anticancer agents targeting breast cancer, particularly HER2-positive subtypes. Further structural optimization could enhance their efficacy and therapeutic profile.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"25 22","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms252212401","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer is one of the most common malignancies affecting women worldwide, with a significant need for novel therapeutic agents to target specific molecular pathways involved in tumor progression. In this study, a series of rhodanine-piperazine hybrids were designed, synthesized, and evaluated for their anticancer activity, targeting key tyrosine kinases such as VEGFR, EGFR, and HER2. Biological screening against breast cancer cell lines (MCF-7, MDA-MB-231, T47D, and MDA-MB-468) revealed 3 of the 13 tested compounds as the most potent, with 5-({4-[bis(4-fluorophenyl)methyl]piperazin-1-yl}methylidene)-2-thioxo-1,3-thiazolidin-4-one (12) showing the strongest activity, particularly against the MCF-7 and MDA-MB-468 cell lines. Molecular docking studies indicated favorable binding interactions of compound 12 and its 3-phenyl-2-thioxo-1,3-thiazolidin-4-one analogue (15) with HER2, VEGFR, and EGFR, and molecular dynamics simulations further confirmed their stable binding to HER2. These findings highlight the potential of rhodanine-piperazine hybrids as promising leads for developing new anticancer agents targeting breast cancer, particularly HER2-positive subtypes. Further structural optimization could enhance their efficacy and therapeutic profile.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).