Rapamycin improves satellite cells autophagy and muscle regeneration during hypercapnia.

IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL JCI insight Pub Date : 2024-11-26 DOI:10.1172/jci.insight.182842
Joseph Balnis, Emily L Jackson, Lisa A Drake, Diane V Singer, Ramon Bossardi Ramos, Harold A Singer, Ariel Jaitovich
{"title":"Rapamycin improves satellite cells autophagy and muscle regeneration during hypercapnia.","authors":"Joseph Balnis, Emily L Jackson, Lisa A Drake, Diane V Singer, Ramon Bossardi Ramos, Harold A Singer, Ariel Jaitovich","doi":"10.1172/jci.insight.182842","DOIUrl":null,"url":null,"abstract":"<p><p>Both CO2 retention, or hypercapnia, and skeletal muscle dysfunction predict higher mortality in critically ill patients. Mechanistically, muscle injury and reduced myogenesis contribute to critical illness myopathy, and while hypercapnia causes muscle wasting, no research has been conducted on hypercapnia-driven dysfunctional myogenesis in vivo. Autophagy flux regulates myogenesis by supporting muscle stem cell -satellite cell- activation, and previous data suggests that hypercapnia inhibits autophagy. We tested whether hypercapnia worsens satellite cell autophagy flux and myogenic potential, and if autophagy induction reverses these deficits. Satellite cell transplantation and lineage tracing experiments showed that hypercapnia undermines satellite cells activation, replication, and myogenic capacity. Bulk and single cell sequencing analyses indicated that hypercapnia disrupts autophagy, senescence, and other satellite cells programs. Autophagy activation was reduced in hypercapnic cultured myoblasts, and autophagy genetic knockdown phenocopied these changes in vitro. Rapamycin stimulation led to AMPK activation and downregulation of the mTOR pathway, which are both associated with accelerated autophagy flux and cell replication. Moreover, hypercapnic mice receiving rapamycin showed improved satellite cells autophagy flux, activation, replication rate, and post transplantation myogenic capacity. In conclusion, we have shown that hypercapnia interferes with satellite cell activation, autophagy flux and myogenesis, and systemic rapamycin administration improved these outcomes.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.182842","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Both CO2 retention, or hypercapnia, and skeletal muscle dysfunction predict higher mortality in critically ill patients. Mechanistically, muscle injury and reduced myogenesis contribute to critical illness myopathy, and while hypercapnia causes muscle wasting, no research has been conducted on hypercapnia-driven dysfunctional myogenesis in vivo. Autophagy flux regulates myogenesis by supporting muscle stem cell -satellite cell- activation, and previous data suggests that hypercapnia inhibits autophagy. We tested whether hypercapnia worsens satellite cell autophagy flux and myogenic potential, and if autophagy induction reverses these deficits. Satellite cell transplantation and lineage tracing experiments showed that hypercapnia undermines satellite cells activation, replication, and myogenic capacity. Bulk and single cell sequencing analyses indicated that hypercapnia disrupts autophagy, senescence, and other satellite cells programs. Autophagy activation was reduced in hypercapnic cultured myoblasts, and autophagy genetic knockdown phenocopied these changes in vitro. Rapamycin stimulation led to AMPK activation and downregulation of the mTOR pathway, which are both associated with accelerated autophagy flux and cell replication. Moreover, hypercapnic mice receiving rapamycin showed improved satellite cells autophagy flux, activation, replication rate, and post transplantation myogenic capacity. In conclusion, we have shown that hypercapnia interferes with satellite cell activation, autophagy flux and myogenesis, and systemic rapamycin administration improved these outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
雷帕霉素能改善高碳酸血症期间卫星细胞的自噬和肌肉再生。
二氧化碳潴留(或高碳酸血症)和骨骼肌功能障碍都预示着危重病人的死亡率较高。从机理上讲,肌肉损伤和肌肉生成减少是危重症肌病的原因,虽然高碳酸血症会导致肌肉萎缩,但目前还没有关于高碳酸血症导致的体内肌肉生成障碍的研究。自噬通量通过支持肌肉干细胞-卫星细胞-的活化来调节肌生成,而之前的数据表明,高碳酸血症会抑制自噬。我们测试了高碳酸血症是否会恶化卫星细胞自噬通量和肌生成潜能,以及自噬诱导是否能逆转这些缺陷。卫星细胞移植和品系追踪实验表明,高碳酸血症会破坏卫星细胞的活化、复制和成肌能力。大量和单细胞测序分析表明,高碳酸血症会破坏自噬、衰老和其他卫星细胞程序。在高碳酸血症培养的成肌细胞中,自噬激活减少,自噬基因敲除在体外表现出这些变化。雷帕霉素刺激导致AMPK活化和mTOR通路下调,这两者都与自噬通量加速和细胞复制有关。此外,接受雷帕霉素治疗的高碳酸血症小鼠的卫星细胞自噬通量、活化、复制率和移植后生肌能力均有所提高。总之,我们已经证明,高碳酸血症会干扰卫星细胞的活化、自噬通量和肌生成,而全身服用雷帕霉素可改善这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
JCI insight
JCI insight Medicine-General Medicine
CiteScore
13.70
自引率
1.20%
发文量
543
审稿时长
6 weeks
期刊介绍: JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.
期刊最新文献
Role of cGAS-STING pathway in aging and sexual dimorphism in diabetic kidney disease. Longitudinal clinical and proteomic diabetes signatures in post-gestational diabetes women. Mast cell activation by NGF drives the formation of trauma-induced heterotopic ossification. Myeloid Drp1 deficiency limits revascularization in ischemic muscles via inflammatory macrophage polarization and metabolic reprograming. Rapamycin improves satellite cells autophagy and muscle regeneration during hypercapnia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1