Nathália Dantas Duarte, Gabriel Mulinari-Santos, Fábio Roberto de Souza Batista, Marcelly Braga Gomes, Naara Gabriela Monteiro, Ana Cláudia Ervolino da Silva, Reinhard Gruber, Paulo Noronha Lisboa-Filho, Pedro Henrique Silva Gomes-Ferreira, Roberta Okamoto
{"title":"Sonification of Deproteinized Bovine Bone Functionalized with Genistein Enhances Bone Repair in Peri-Implant Bone Defects in Ovariectomized Rats.","authors":"Nathália Dantas Duarte, Gabriel Mulinari-Santos, Fábio Roberto de Souza Batista, Marcelly Braga Gomes, Naara Gabriela Monteiro, Ana Cláudia Ervolino da Silva, Reinhard Gruber, Paulo Noronha Lisboa-Filho, Pedro Henrique Silva Gomes-Ferreira, Roberta Okamoto","doi":"10.3390/jfb15110328","DOIUrl":null,"url":null,"abstract":"<p><p>Estrogen deficiency is one of several contributing factors to catabolic changes in bone surrounding dental implants, impairing bone repair in defects requiring bone regeneration. Functionalizing bone substitutes is an alternative approach among various strategies to address this challenge. In this study, the aim was to evaluate the effect of functionalizing deproteinized bovine bone (Bio-Oss<sup>®</sup>, BO) with genistein via sonication on peri-implant bone defects in ovariectomized rats. The animals were randomly distributed according to the treatment into the following four groups (n = 10): BO sonicated with genistein (BOS + GEN), BO sonicated alone (BOS), untreated BO (BO), and blood clot only (CLOT). After twenty-eight days, implant removal torque was determined, and the peri-implant bone parameters were calculated based on computed microtomography. Additionally, the gene expression of bone turnover markers was evaluated. As a main result, the functionalization with genistein increased implant removal torque and the peri-implant bone volume in the BOS + GEN group compared to both BOS and BO groups (both <i>p</i> < 0.05). These findings suggest that the sonification of deproteinized bovine bone functionalized with genistein improves bone repair in peri-implant bone defects in ovariectomized rats.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 11","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595652/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15110328","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Estrogen deficiency is one of several contributing factors to catabolic changes in bone surrounding dental implants, impairing bone repair in defects requiring bone regeneration. Functionalizing bone substitutes is an alternative approach among various strategies to address this challenge. In this study, the aim was to evaluate the effect of functionalizing deproteinized bovine bone (Bio-Oss®, BO) with genistein via sonication on peri-implant bone defects in ovariectomized rats. The animals were randomly distributed according to the treatment into the following four groups (n = 10): BO sonicated with genistein (BOS + GEN), BO sonicated alone (BOS), untreated BO (BO), and blood clot only (CLOT). After twenty-eight days, implant removal torque was determined, and the peri-implant bone parameters were calculated based on computed microtomography. Additionally, the gene expression of bone turnover markers was evaluated. As a main result, the functionalization with genistein increased implant removal torque and the peri-implant bone volume in the BOS + GEN group compared to both BOS and BO groups (both p < 0.05). These findings suggest that the sonification of deproteinized bovine bone functionalized with genistein improves bone repair in peri-implant bone defects in ovariectomized rats.
雌激素缺乏是导致牙科植入物周围骨质发生分解性变化的几个因素之一,会影响需要骨再生的缺损部位的骨修复。在应对这一挑战的各种策略中,骨替代品功能化是一种替代方法。本研究旨在评估通过超声处理将去蛋白牛骨(Bio-Oss®,BO)与染料木素功能化对卵巢切除大鼠种植体周围骨缺损的影响。动物按处理方法随机分为以下四组(n = 10):使用染料木素超声处理的 BO 组(BOS + GEN)、单独超声处理的 BO 组(BOS)、未处理的 BO 组(BO)和仅使用血凝块的 BO 组(CLOT)。二十八天后,测定种植体拔除扭矩,并根据计算机显微层析技术计算种植体周围的骨参数。此外,还对骨转换标志物的基因表达进行了评估。主要结果是,与 BOS 组和 BO 组相比,使用染料木素的功能化增加了 BOS + GEN 组的种植体移除扭矩和种植体周围骨量(均 p < 0.05)。这些研究结果表明,在卵巢切除大鼠种植体周围骨缺损的情况下,对含有染料木素功能化成分的去蛋白牛骨进行超声处理可改善骨修复效果。
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.