Sonification of Deproteinized Bovine Bone Functionalized with Genistein Enhances Bone Repair in Peri-Implant Bone Defects in Ovariectomized Rats.

IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL Journal of Functional Biomaterials Pub Date : 2024-11-05 DOI:10.3390/jfb15110328
Nathália Dantas Duarte, Gabriel Mulinari-Santos, Fábio Roberto de Souza Batista, Marcelly Braga Gomes, Naara Gabriela Monteiro, Ana Cláudia Ervolino da Silva, Reinhard Gruber, Paulo Noronha Lisboa-Filho, Pedro Henrique Silva Gomes-Ferreira, Roberta Okamoto
{"title":"Sonification of Deproteinized Bovine Bone Functionalized with Genistein Enhances Bone Repair in Peri-Implant Bone Defects in Ovariectomized Rats.","authors":"Nathália Dantas Duarte, Gabriel Mulinari-Santos, Fábio Roberto de Souza Batista, Marcelly Braga Gomes, Naara Gabriela Monteiro, Ana Cláudia Ervolino da Silva, Reinhard Gruber, Paulo Noronha Lisboa-Filho, Pedro Henrique Silva Gomes-Ferreira, Roberta Okamoto","doi":"10.3390/jfb15110328","DOIUrl":null,"url":null,"abstract":"<p><p>Estrogen deficiency is one of several contributing factors to catabolic changes in bone surrounding dental implants, impairing bone repair in defects requiring bone regeneration. Functionalizing bone substitutes is an alternative approach among various strategies to address this challenge. In this study, the aim was to evaluate the effect of functionalizing deproteinized bovine bone (Bio-Oss<sup>®</sup>, BO) with genistein via sonication on peri-implant bone defects in ovariectomized rats. The animals were randomly distributed according to the treatment into the following four groups (n = 10): BO sonicated with genistein (BOS + GEN), BO sonicated alone (BOS), untreated BO (BO), and blood clot only (CLOT). After twenty-eight days, implant removal torque was determined, and the peri-implant bone parameters were calculated based on computed microtomography. Additionally, the gene expression of bone turnover markers was evaluated. As a main result, the functionalization with genistein increased implant removal torque and the peri-implant bone volume in the BOS + GEN group compared to both BOS and BO groups (both <i>p</i> < 0.05). These findings suggest that the sonification of deproteinized bovine bone functionalized with genistein improves bone repair in peri-implant bone defects in ovariectomized rats.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 11","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595652/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15110328","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Estrogen deficiency is one of several contributing factors to catabolic changes in bone surrounding dental implants, impairing bone repair in defects requiring bone regeneration. Functionalizing bone substitutes is an alternative approach among various strategies to address this challenge. In this study, the aim was to evaluate the effect of functionalizing deproteinized bovine bone (Bio-Oss®, BO) with genistein via sonication on peri-implant bone defects in ovariectomized rats. The animals were randomly distributed according to the treatment into the following four groups (n = 10): BO sonicated with genistein (BOS + GEN), BO sonicated alone (BOS), untreated BO (BO), and blood clot only (CLOT). After twenty-eight days, implant removal torque was determined, and the peri-implant bone parameters were calculated based on computed microtomography. Additionally, the gene expression of bone turnover markers was evaluated. As a main result, the functionalization with genistein increased implant removal torque and the peri-implant bone volume in the BOS + GEN group compared to both BOS and BO groups (both p < 0.05). These findings suggest that the sonification of deproteinized bovine bone functionalized with genistein improves bone repair in peri-implant bone defects in ovariectomized rats.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用染料木素对去蛋白牛骨进行声化处理,可增强卵巢切除大鼠植骨期骨缺损的骨修复。
雌激素缺乏是导致牙科植入物周围骨质发生分解性变化的几个因素之一,会影响需要骨再生的缺损部位的骨修复。在应对这一挑战的各种策略中,骨替代品功能化是一种替代方法。本研究旨在评估通过超声处理将去蛋白牛骨(Bio-Oss®,BO)与染料木素功能化对卵巢切除大鼠种植体周围骨缺损的影响。动物按处理方法随机分为以下四组(n = 10):使用染料木素超声处理的 BO 组(BOS + GEN)、单独超声处理的 BO 组(BOS)、未处理的 BO 组(BO)和仅使用血凝块的 BO 组(CLOT)。二十八天后,测定种植体拔除扭矩,并根据计算机显微层析技术计算种植体周围的骨参数。此外,还对骨转换标志物的基因表达进行了评估。主要结果是,与 BOS 组和 BO 组相比,使用染料木素的功能化增加了 BOS + GEN 组的种植体移除扭矩和种植体周围骨量(均 p < 0.05)。这些研究结果表明,在卵巢切除大鼠种植体周围骨缺损的情况下,对含有染料木素功能化成分的去蛋白牛骨进行超声处理可改善骨修复效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
期刊最新文献
Biaxial Flexural Strength and Vickers Hardness of 3D-Printed and Milled 5Y Partially Stabilized Zirconia. Virus-Mimicking Polymer Nanocomplexes Co-Assembling HCV E1E2 and Core Proteins with TLR 7/8 Agonist-Synthesis, Characterization, and In Vivo Activity. Sacrificing Alginate in Decellularized Extracellular Matrix Scaffolds for Implantable Artificial Livers. Effects of Microstructured and Anti-Inflammatory-Coated Cochlear Implant Electrodes on Fibrous Tissue Growth and Neuronal Survival. The Influence of Resin Infiltration on the Shear Bond Strength of Orthodontic Brackets: A Systematic Review and Meta-Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1