{"title":"Calcium Transport Activity of UV/H<sub>2</sub>O<sub>2</sub>-Degraded Fucoidans and Their Structural Characterization.","authors":"Biyang Zhu, Jiacheng Wang, Lijun You, Lianzhu Lin, Kuncheng Lin, Kseniya Hileuskaya","doi":"10.3390/md22110499","DOIUrl":null,"url":null,"abstract":"<p><p>Calcium-chelated polysaccharides have been increasingly considered as promising calcium supplements. In this study, degraded fucoidans (DFs) with different molecular weights (Mws) were prepared after UV/H<sub>2</sub>O<sub>2</sub> treatment; their calcium-chelating capacities and intestinal absorption properties were also investigated. The results showed that the calcium-chelating capacities of DFs were improved with a decrease in Mw. This was mainly ascribed to the increased carboxyl content, which was caused by free-radical-mediated degradation. Meanwhile, the conformation of DF changed from a rod-like chain to a shorter and softer chain. The thermodynamic analysis demonstrated that DF binding to calcium was spontaneously driven by electrostatic interactions. Additionally, DF-Ca chelates with lower Mw showed favorable transport properties across a Caco-2 cell monolayer and could effectively accelerate the calcium influx through intestinal enterocytes. Furthermore, these chelates also exhibited a protective effect on the epithelial barrier by alleviating damage to tight junction proteins. These findings provide an effective free-radical-related approach for the development of polysaccharide-based calcium supplements with improved intestinal calcium transport ability.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 11","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595268/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md22110499","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Calcium-chelated polysaccharides have been increasingly considered as promising calcium supplements. In this study, degraded fucoidans (DFs) with different molecular weights (Mws) were prepared after UV/H2O2 treatment; their calcium-chelating capacities and intestinal absorption properties were also investigated. The results showed that the calcium-chelating capacities of DFs were improved with a decrease in Mw. This was mainly ascribed to the increased carboxyl content, which was caused by free-radical-mediated degradation. Meanwhile, the conformation of DF changed from a rod-like chain to a shorter and softer chain. The thermodynamic analysis demonstrated that DF binding to calcium was spontaneously driven by electrostatic interactions. Additionally, DF-Ca chelates with lower Mw showed favorable transport properties across a Caco-2 cell monolayer and could effectively accelerate the calcium influx through intestinal enterocytes. Furthermore, these chelates also exhibited a protective effect on the epithelial barrier by alleviating damage to tight junction proteins. These findings provide an effective free-radical-related approach for the development of polysaccharide-based calcium supplements with improved intestinal calcium transport ability.
期刊介绍:
Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.