{"title":"Gut microbiota dysbiosis induced by alcohol exposure in pubertal and adult mice.","authors":"Jinlong Yang, Haoyu Wang, Xiaoqian Lin, Jincen Liu, Yue Feng, Yuyin Bai, Hewei Liang, Tongyuan Hu, Zhinan Wu, Jianghua Lai, Jianmei Liu, Yuanqiang Zou, Shuguang Wei, Peng Yan","doi":"10.1128/msystems.01366-24","DOIUrl":null,"url":null,"abstract":"<p><p>Alcohol intake causes many diseases including neuropsychiatric symptoms, nutritional deficiency, progressive pancreatitis, liver cirrhosis, and ischemic heart disease. The gut microbiota changes significantly after alcohol exposure. Alcohol consumption tends to increase in underage and young people, but the feature of the gut microbiota in puberty remains largely unexplored. In this study, we conducted alcohol-exposed pubertal and adult mice model to investigate the intestinal damage and gut microbiota change. Interestingly, the responses of pubertal mice and adult mice after alcohol exposure were different. We found that alcohol dehydrogenase decreased and aldehyde dehydrogenase increased in the liver of pubertal mice, thus reducing the accumulation of toxic acetaldehyde. Furthermore, alcohol exposure caused less intestinal injury in pubertal mice. Through the analysis of metagenome assembly genome, we obtained many unrecognized bacterial genomes. <i>Limosillactobacillus reuteri</i> (cluster_56) and <i>Lactobacillus intestinalis</i> (cluster_57) were assembled from the samples of pubertal mice, which were involved in the production of indole acetic acid and the transformation of bile acids in response to alcohol exposure. This study provided a new insight to investigate the gut microbiota change and explained the difference of the gut microbiota after alcohol exposure between pubertal mice and adult mice.</p><p><strong>Importance: </strong>This study elucidates the significant impact of alcohol exposure on the gut microbiota and metabolic pathways in mice, highlighting the differential responses between adolescent and adult stages. Alcohol exposure was found to damage the intestinal barrier, alter the microbial composition by decreasing beneficial bacteria like <i>Lactobacillus</i>, and increase harmful bacteria such as <i>Alistipes</i>. The study also discovered unique microbial changes and resilience in pubertal mice. Species-level metagenomic analysis revealed specific microbial taxa and metabolic functions affected by alcohol. Metagenome-assembled genomes (MAGs) found many species that could not be annotated by conventional methods including many members of <i>Lachnospiraceae</i>, greatly expanding our understanding of the gut microbiota composition. These findings underscore the need for further research on alcohol's effects on various organs and the implications of microbial metabolites on disease progression.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":" ","pages":"e0136624"},"PeriodicalIF":5.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651099/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSystems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msystems.01366-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alcohol intake causes many diseases including neuropsychiatric symptoms, nutritional deficiency, progressive pancreatitis, liver cirrhosis, and ischemic heart disease. The gut microbiota changes significantly after alcohol exposure. Alcohol consumption tends to increase in underage and young people, but the feature of the gut microbiota in puberty remains largely unexplored. In this study, we conducted alcohol-exposed pubertal and adult mice model to investigate the intestinal damage and gut microbiota change. Interestingly, the responses of pubertal mice and adult mice after alcohol exposure were different. We found that alcohol dehydrogenase decreased and aldehyde dehydrogenase increased in the liver of pubertal mice, thus reducing the accumulation of toxic acetaldehyde. Furthermore, alcohol exposure caused less intestinal injury in pubertal mice. Through the analysis of metagenome assembly genome, we obtained many unrecognized bacterial genomes. Limosillactobacillus reuteri (cluster_56) and Lactobacillus intestinalis (cluster_57) were assembled from the samples of pubertal mice, which were involved in the production of indole acetic acid and the transformation of bile acids in response to alcohol exposure. This study provided a new insight to investigate the gut microbiota change and explained the difference of the gut microbiota after alcohol exposure between pubertal mice and adult mice.
Importance: This study elucidates the significant impact of alcohol exposure on the gut microbiota and metabolic pathways in mice, highlighting the differential responses between adolescent and adult stages. Alcohol exposure was found to damage the intestinal barrier, alter the microbial composition by decreasing beneficial bacteria like Lactobacillus, and increase harmful bacteria such as Alistipes. The study also discovered unique microbial changes and resilience in pubertal mice. Species-level metagenomic analysis revealed specific microbial taxa and metabolic functions affected by alcohol. Metagenome-assembled genomes (MAGs) found many species that could not be annotated by conventional methods including many members of Lachnospiraceae, greatly expanding our understanding of the gut microbiota composition. These findings underscore the need for further research on alcohol's effects on various organs and the implications of microbial metabolites on disease progression.
mSystemsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
10.50
自引率
3.10%
发文量
308
审稿时长
13 weeks
期刊介绍:
mSystems™ will publish preeminent work that stems from applying technologies for high-throughput analyses to achieve insights into the metabolic and regulatory systems at the scale of both the single cell and microbial communities. The scope of mSystems™ encompasses all important biological and biochemical findings drawn from analyses of large data sets, as well as new computational approaches for deriving these insights. mSystems™ will welcome submissions from researchers who focus on the microbiome, genomics, metagenomics, transcriptomics, metabolomics, proteomics, glycomics, bioinformatics, and computational microbiology. mSystems™ will provide streamlined decisions, while carrying on ASM''s tradition of rigorous peer review.