Recent Advances in the Preparation, Antibacterial Mechanisms, and Applications of Chitosan.

IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL Journal of Functional Biomaterials Pub Date : 2024-10-27 DOI:10.3390/jfb15110318
Kunjian Wu, Ziyuan Yan, Ziyang Wu, Jiaye Li, Wendi Zhong, Linyu Ding, Tian Zhong, Tao Jiang
{"title":"Recent Advances in the Preparation, Antibacterial Mechanisms, and Applications of Chitosan.","authors":"Kunjian Wu, Ziyuan Yan, Ziyang Wu, Jiaye Li, Wendi Zhong, Linyu Ding, Tian Zhong, Tao Jiang","doi":"10.3390/jfb15110318","DOIUrl":null,"url":null,"abstract":"<p><p>Chitosan, a cationic polysaccharide derived from the deacetylation of chitin, is widely distributed in nature. Its antibacterial activity, biocompatibility, biodegradability, and non-toxicity have given it extensive uses in medicine, food, and cosmetics. However, the significant impact of variations in the physicochemical properties of chitosan extracted from different sources on its application efficacy, as well as the considerable differences in its antimicrobial mechanisms under varying conditions, limit the full realization of its biological functions. Therefore, this paper provides a comprehensive review of the structural characteristics of chitosan, its preparation methods from different sources, its antimicrobial mechanisms, and the factors influencing its antimicrobial efficacy. Furthermore, we highlight the latest applications of chitosan and its derivatives across various fields. We found that the use of microbial extraction shows promise as a new method for producing high-quality chitosan. By analyzing the different physicochemical properties of chitosan from various sources and the application of chitosan-based materials (such as nanoparticles, films, sponges, and hydrogels) prepared using different methods in biomedicine, food, agriculture, and cosmetics, we expect these findings to provide theoretical support for the broader utilization of chitosan.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 11","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595984/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15110318","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Chitosan, a cationic polysaccharide derived from the deacetylation of chitin, is widely distributed in nature. Its antibacterial activity, biocompatibility, biodegradability, and non-toxicity have given it extensive uses in medicine, food, and cosmetics. However, the significant impact of variations in the physicochemical properties of chitosan extracted from different sources on its application efficacy, as well as the considerable differences in its antimicrobial mechanisms under varying conditions, limit the full realization of its biological functions. Therefore, this paper provides a comprehensive review of the structural characteristics of chitosan, its preparation methods from different sources, its antimicrobial mechanisms, and the factors influencing its antimicrobial efficacy. Furthermore, we highlight the latest applications of chitosan and its derivatives across various fields. We found that the use of microbial extraction shows promise as a new method for producing high-quality chitosan. By analyzing the different physicochemical properties of chitosan from various sources and the application of chitosan-based materials (such as nanoparticles, films, sponges, and hydrogels) prepared using different methods in biomedicine, food, agriculture, and cosmetics, we expect these findings to provide theoretical support for the broader utilization of chitosan.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
壳聚糖的制备、抗菌机制和应用的最新进展。
甲壳素是一种阳离子多糖,由甲壳素脱乙酰化而来,广泛分布于自然界中。壳聚糖具有抗菌活性、生物相容性、生物可降解性和无毒性,因此在医药、食品和化妆品中有着广泛的用途。然而,从不同来源提取的壳聚糖理化性质的差异对其应用效果有很大影响,而且在不同条件下,其抗菌机制也存在很大差异,这限制了其生物功能的充分发挥。因此,本文全面综述了壳聚糖的结构特点、不同来源的制备方法、抗菌机理以及影响其抗菌功效的因素。此外,我们还重点介绍了壳聚糖及其衍生物在各个领域的最新应用。我们发现,使用微生物提取法有望成为生产高质量壳聚糖的新方法。通过分析不同来源壳聚糖的不同理化性质,以及使用不同方法制备的壳聚糖基材料(如纳米颗粒、薄膜、海绵和水凝胶)在生物医学、食品、农业和化妆品领域的应用,我们希望这些发现能为壳聚糖的更广泛应用提供理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
期刊最新文献
Strontium- and Copper-Doped Ceramic Granules in Bone Regeneration-Associated Cellular Processes. A Novel Graphene-Based Nanomaterial for the Development of a Pelvic Implant to Treat Pelvic Organ Prolapse. Spherical Shell Bioprinting to Produce Uniform Spheroids with Controlled Sizes. Correction: Jin et al. A pH-Responsive DNA Tetrahedron/Methotrexate Drug Delivery System Used for Rheumatoid Arthritis Treatment. J. Funct. Biomater. 2023, 14, 541. Properties, Production, and Recycling of Regenerated Cellulose Fibers: Special Medical Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1