Zhile Li, Han Gan, Siyuan Li, Yuchen Xue, Kai Luo, Kai Huang, Yunqian Zhang, Yan Wang, Lai Jiang, Hui Zhang
{"title":"Bioinformatics Identification and Validation of Ferroptosis-Related Key Genes and Therapeutic Compounds in Septic Lung Injury.","authors":"Zhile Li, Han Gan, Siyuan Li, Yuchen Xue, Kai Luo, Kai Huang, Yunqian Zhang, Yan Wang, Lai Jiang, Hui Zhang","doi":"10.2147/JIR.S476522","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Septic lung injury (SLI) is a severe condition with high mortality, and ferroptosis, a form of programmed cell death, is implicated in its pathogenesis. However, the explicit mechanisms underlying this condition remain unclear. This study aimed to elucidate and validate key ferroptosis-related genes involved in the pathogenesis of SLI through bioinformatics analysis and experimental validation.</p><p><strong>Methods: </strong>Microarray data related to SLI from the GSE130936 dataset were downloaded from the Gene Expression Omnibus (GEO) database. These data were then intersected with the FerrDb database to obtain ferroptosis-related differentially expressed genes (DEGs). Protein-protein interaction (PPI) networks and functional enrichment analysis were employed to identify key ferroptosis-related DEGs. The Connectivity Map (c-MAP) tool was used to search for potential compounds or drugs that may inhibit ferroptosis-related DEGs. The transcriptional levels of the key genes and potential therapeutic compounds were verified in an LPS-induced mouse model of lung injury. The expression of these key genes was further verified using the GSE60088 and GSE137342 datasets.</p><p><strong>Results: </strong>38 ferroptosis-related DEGs were identified between the septic and control mice. PPI network analysis revealed four modules, the most significant of which included eight ferroptosis-related DEGs. Functional enrichment analysis showed that these genes were enriched in the HIF-1 signaling pathway, including IL-6 (Interleukin-6), TIMP1 (Tissue Inhibitor of Metalloproteinase 1), HIF-1α (Hypoxia-Inducible Factor-1α), and HMOX1 (Heme Oxygenase-1). Phloretin, a natural compound, was identified as a potential inhibitor of these genes. Treatment with phloretin significantly reduced the expression of these genes (<i>p</i> < 0.05), mitigated lung injury, improved inflammatory profiles by approximately 50%, and ferroptosis profiles by nearly 30% in the SLI models.</p><p><strong>Conclusion: </strong>This study elucidates the significant role of ferroptosis in SLI and identifies phloretin as a potential therapeutic agent. However, further research, particularly involving human clinical trials, is necessary to validate these findings for clinical use.</p>","PeriodicalId":16107,"journal":{"name":"Journal of Inflammation Research","volume":"17 ","pages":"9215-9230"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589777/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JIR.S476522","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Septic lung injury (SLI) is a severe condition with high mortality, and ferroptosis, a form of programmed cell death, is implicated in its pathogenesis. However, the explicit mechanisms underlying this condition remain unclear. This study aimed to elucidate and validate key ferroptosis-related genes involved in the pathogenesis of SLI through bioinformatics analysis and experimental validation.
Methods: Microarray data related to SLI from the GSE130936 dataset were downloaded from the Gene Expression Omnibus (GEO) database. These data were then intersected with the FerrDb database to obtain ferroptosis-related differentially expressed genes (DEGs). Protein-protein interaction (PPI) networks and functional enrichment analysis were employed to identify key ferroptosis-related DEGs. The Connectivity Map (c-MAP) tool was used to search for potential compounds or drugs that may inhibit ferroptosis-related DEGs. The transcriptional levels of the key genes and potential therapeutic compounds were verified in an LPS-induced mouse model of lung injury. The expression of these key genes was further verified using the GSE60088 and GSE137342 datasets.
Results: 38 ferroptosis-related DEGs were identified between the septic and control mice. PPI network analysis revealed four modules, the most significant of which included eight ferroptosis-related DEGs. Functional enrichment analysis showed that these genes were enriched in the HIF-1 signaling pathway, including IL-6 (Interleukin-6), TIMP1 (Tissue Inhibitor of Metalloproteinase 1), HIF-1α (Hypoxia-Inducible Factor-1α), and HMOX1 (Heme Oxygenase-1). Phloretin, a natural compound, was identified as a potential inhibitor of these genes. Treatment with phloretin significantly reduced the expression of these genes (p < 0.05), mitigated lung injury, improved inflammatory profiles by approximately 50%, and ferroptosis profiles by nearly 30% in the SLI models.
Conclusion: This study elucidates the significant role of ferroptosis in SLI and identifies phloretin as a potential therapeutic agent. However, further research, particularly involving human clinical trials, is necessary to validate these findings for clinical use.
期刊介绍:
An international, peer-reviewed, open access, online journal that welcomes laboratory and clinical findings on the molecular basis, cell biology and pharmacology of inflammation.