Dual-modal overcoming of physical barriers for improved photodynamic cancer therapy via soft organosilica nanocapsules.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Nanobiotechnology Pub Date : 2024-11-27 DOI:10.1186/s12951-024-02945-z
Wei Lu, Yang Li, Xiaojun Zhang, Ning Wang, Dong Chen, Yatong Zhao, Guang Li, Xuzhi Shi, Xiaobo Ma, Xiaodan Su, Feng Wang, Chuqiang Shu, Kun Chen
{"title":"Dual-modal overcoming of physical barriers for improved photodynamic cancer therapy via soft organosilica nanocapsules.","authors":"Wei Lu, Yang Li, Xiaojun Zhang, Ning Wang, Dong Chen, Yatong Zhao, Guang Li, Xuzhi Shi, Xiaobo Ma, Xiaodan Su, Feng Wang, Chuqiang Shu, Kun Chen","doi":"10.1186/s12951-024-02945-z","DOIUrl":null,"url":null,"abstract":"<p><p>Amidst the burgeoning field of cancer nanomedicine, dense extracellular matrices and anomalous vascular structures in the tumor microenvironment (TME) present substantial physical barriers to effective therapeutic delivery. These physical barriers hinder the optimal bioavailability of nanomedicine. Here, we propose a pioneering dual-modal strategy for overcoming physical barriers via soft organosilica nanocapsules (SMONs). Hyaluronidase-modified flexible spheres work by degrading the extracellular matrix and utilizing their flexible characteristics to enhance penetration into deeper layers. Compared with their stiff counterparts, the SMONs show diminished Young's modulus, then the inherent softness of the SMONs confers distinct advantages, and significantly augmented cellular internalization within 4T1 cells, leading to an amplified in vitro photodynamic therapeutic effect. Furthermore, hyaluronidase-functionalized SMONs (SMONs-HAase) exhibit enhanced tumor penetration in 3D spheroids. Post incorporation of the photosensitizer chlorin e6, when administered intravenously, these soft organosilica nanocapsules amplify the efficacy of photodynamic therapy. In addition, RNA-seq analysis of SMONs-HAase-Ce6 shows it alters gene expression, degrading the extracellular matrix and impairing mitochondrial function. To sum up, this work elucidates the potential of a dual-modal strategy, highlighting the promise of SMONs in overcoming TME physical barriers and optimizing therapeutic outcomes.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"734"},"PeriodicalIF":10.6000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600580/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-02945-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Amidst the burgeoning field of cancer nanomedicine, dense extracellular matrices and anomalous vascular structures in the tumor microenvironment (TME) present substantial physical barriers to effective therapeutic delivery. These physical barriers hinder the optimal bioavailability of nanomedicine. Here, we propose a pioneering dual-modal strategy for overcoming physical barriers via soft organosilica nanocapsules (SMONs). Hyaluronidase-modified flexible spheres work by degrading the extracellular matrix and utilizing their flexible characteristics to enhance penetration into deeper layers. Compared with their stiff counterparts, the SMONs show diminished Young's modulus, then the inherent softness of the SMONs confers distinct advantages, and significantly augmented cellular internalization within 4T1 cells, leading to an amplified in vitro photodynamic therapeutic effect. Furthermore, hyaluronidase-functionalized SMONs (SMONs-HAase) exhibit enhanced tumor penetration in 3D spheroids. Post incorporation of the photosensitizer chlorin e6, when administered intravenously, these soft organosilica nanocapsules amplify the efficacy of photodynamic therapy. In addition, RNA-seq analysis of SMONs-HAase-Ce6 shows it alters gene expression, degrading the extracellular matrix and impairing mitochondrial function. To sum up, this work elucidates the potential of a dual-modal strategy, highlighting the promise of SMONs in overcoming TME physical barriers and optimizing therapeutic outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过软有机硅纳米胶囊克服物理障碍,改善光动力癌症治疗的双模式。
在蓬勃发展的癌症纳米医学领域,肿瘤微环境(TME)中致密的细胞外基质和异常的血管结构对有效的治疗递送构成了巨大的物理障碍。这些物理障碍阻碍了纳米药物的最佳生物利用度。在此,我们提出了一种开创性的双模式策略,通过软有机硅纳米胶囊(SMONs)克服物理障碍。透明质酸酶修饰的柔性球体通过降解细胞外基质发挥作用,并利用其柔性特点加强对深层的渗透。与坚硬的同类产品相比,SMONs的杨氏模量较小,因此SMONs固有的柔软性具有明显的优势,能显著提高细胞在4T1细胞内的内化,从而增强体外光动力治疗效果。此外,透明质酸酶功能化的SMONs(SMONs-HAase)在三维球体内显示出更强的肿瘤穿透性。加入光敏剂氯素 e6 后,静脉注射这些软有机硅纳米胶囊可增强光动力疗法的疗效。此外,对SMONs-HAase-Ce6的RNA-seq分析表明,它改变了基因表达,降解了细胞外基质,损害了线粒体功能。总之,这项工作阐明了双模式策略的潜力,凸显了 SMONs 在克服 TME 物理障碍和优化治疗效果方面的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
期刊最新文献
Engineered biomimetic cisplatin-polyphenol nanocomplex for chemo-immunotherapy of glioblastoma by inducing pyroptosis. Clinical-grade extracellular vesicles derived from umbilical cord mesenchymal stromal cells: preclinical development and first-in-human intra-articular validation as therapeutics for knee osteoarthritis. A reactive oxygen species-responsive hydrogel loaded with Apelin-13 promotes the repair of spinal cord injury by regulating macrophage M1/M2 polarization and neuroinflammation. Silk-engineered bioactive nanoparticles for targeted alleviation of acute inflammatory disease via macrophage reprogramming. Genetically engineered biomimetic ATP-responsive nanozyme for the treatment of cardiac fibrosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1