Hot-Melt Extrusion Drug Delivery System-Formulated Haematococcus pluvialis Extracts Regulate Inflammation and Oxidative Stress in Lipopolysaccharide-Stimulated Macrophages.

IF 4.9 2区 医学 Q1 CHEMISTRY, MEDICINAL Marine Drugs Pub Date : 2024-11-13 DOI:10.3390/md22110512
Tae-Young Gil, Ha-Yeon Sim, Ha-Yeon Lee, Suji Ryu, Jong-Suep Baek, Dae Geun Kim, Jaehoon Sim, Hyo-Jin An
{"title":"Hot-Melt Extrusion Drug Delivery System-Formulated <i>Haematococcus pluvialis</i> Extracts Regulate Inflammation and Oxidative Stress in Lipopolysaccharide-Stimulated Macrophages.","authors":"Tae-Young Gil, Ha-Yeon Sim, Ha-Yeon Lee, Suji Ryu, Jong-Suep Baek, Dae Geun Kim, Jaehoon Sim, Hyo-Jin An","doi":"10.3390/md22110512","DOIUrl":null,"url":null,"abstract":"<p><p><i>Haematococcus pluvialis</i> contains valuable bioactive compounds, including astaxanthin, proteins, and fatty acids. Astaxanthin is known for its various health benefits, such as preserving the redox balance and reducing inflammation. However, its low stability and poor water solubility present challenges for various applications. Hot-melt extrusion (HME) technology enhances the aqueous solubility of <i>H. pluvialis</i> extracts, increasing the usable astaxanthin content through nanoencapsulation (HME-DDS-applied extracts, ASX-60F and ASX-100F). This study compared the effects of HME-DDS-derived extracts (ASX-60F and ASX-100F) and the non-applied extract (ASX-C) under inflammatory and oxidative stress conditions. In animal models of sepsis, 60F and 100F treatment exhibited higher survival rates and a lower expression of pro-inflammatory biomarkers compared to those treated with C. In lipopolysaccharide-stimulated RAW 264.7 macrophages, nitric oxide (NO) production and the expression of pro-inflammatory mediators such as cyclooxygenase-2 and inducible NO synthase were reduced by 60F or 100F treatments via ERK/p-38 mitogen-activated protein kinase (MAPK) signaling. Moreover, 60F or 100F inhibited reactive oxygen species production regulated by nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling. Collectively, these findings suggest that HME-DDS-derived <i>H. pluvialis</i> extracts exert anti-inflammatory and antioxidant effects by inhibiting MAPK phosphorylation and activating Nrf2/HO-1 expression.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 11","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595552/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md22110512","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Haematococcus pluvialis contains valuable bioactive compounds, including astaxanthin, proteins, and fatty acids. Astaxanthin is known for its various health benefits, such as preserving the redox balance and reducing inflammation. However, its low stability and poor water solubility present challenges for various applications. Hot-melt extrusion (HME) technology enhances the aqueous solubility of H. pluvialis extracts, increasing the usable astaxanthin content through nanoencapsulation (HME-DDS-applied extracts, ASX-60F and ASX-100F). This study compared the effects of HME-DDS-derived extracts (ASX-60F and ASX-100F) and the non-applied extract (ASX-C) under inflammatory and oxidative stress conditions. In animal models of sepsis, 60F and 100F treatment exhibited higher survival rates and a lower expression of pro-inflammatory biomarkers compared to those treated with C. In lipopolysaccharide-stimulated RAW 264.7 macrophages, nitric oxide (NO) production and the expression of pro-inflammatory mediators such as cyclooxygenase-2 and inducible NO synthase were reduced by 60F or 100F treatments via ERK/p-38 mitogen-activated protein kinase (MAPK) signaling. Moreover, 60F or 100F inhibited reactive oxygen species production regulated by nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling. Collectively, these findings suggest that HME-DDS-derived H. pluvialis extracts exert anti-inflammatory and antioxidant effects by inhibiting MAPK phosphorylation and activating Nrf2/HO-1 expression.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热熔挤压给药系统配制的血球菌提取物可调节脂多糖刺激的巨噬细胞的炎症和氧化应激。
血球藻含有宝贵的生物活性化合物,包括虾青素、蛋白质和脂肪酸。虾青素因其多种健康益处而闻名,如保持氧化还原平衡和减少炎症。然而,虾青素的低稳定性和较差的水溶性给各种应用带来了挑战。热熔挤压(HME)技术提高了褐藻虾青素提取物的水溶性,通过纳米封装(HME-DDS 应用提取物,ASX-60F 和 ASX-100F)增加了可用虾青素的含量。本研究比较了 HME-DDS 提取物(ASX-60F 和 ASX-100F)和未应用提取物(ASX-C)在炎症和氧化应激条件下的作用。在脂多糖刺激的 RAW 264.7 巨噬细胞中,60F 或 100F 通过 ERK/p-38 丝裂原活化蛋白激酶(MAPK)信号转导减少了一氧化氮(NO)的产生以及环氧化酶-2 和诱导型 NO 合酶等促炎介质的表达。此外,60F或100F还抑制了由核因子红细胞2相关因子2(Nrf2)/血红素加氧酶1(HO-1)信号调节的活性氧生成。总之,这些研究结果表明,HME-DDS衍生的壶菌提取物可通过抑制MAPK磷酸化和激活Nrf2/HO-1的表达来发挥抗炎和抗氧化作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Marine Drugs
Marine Drugs 医学-医药化学
CiteScore
9.60
自引率
14.80%
发文量
671
审稿时长
1 months
期刊介绍: Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.
期刊最新文献
Chemical Investigation of the Mediterranean Sponge Crambe crambe by UHPLC-HRMS/MS via Manual and Computational Dereplication Approaches. Effects of Marine-Derived Components on Cardiovascular Disease Risk Factors and Gut Microbiota Diversity. Genome-Based Mining of Carpatamides I-M and Their Candidate Biosynthetic Gene Cluster. Marine Fungi Bioactives with Anti-Inflammatory, Antithrombotic and Antioxidant Health-Promoting Properties Against Inflammation-Related Chronic Diseases. Protective Effect of Marine Peptide from Netunea arthritica cumingii Against Gentamicin-Induced Hair Cell Damage in Zebrafish.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1