Shuming Yin, Liangcai Gao, Xiaoyue Sun, Mei Zhang, Hongyi Gao, Xiaoqing Chen, Dan Zhang, Xinyu Ming, Lei Yang, Yaqiang Hu, Xi Chen, Meizhen Liu, Xia Zhan, Yuting Guan, Liren Wang, Lianshu Han, Ping Zhu, Dali Li
{"title":"Amelioration of metabolic and behavioral defects through base editing in the Pah<sup>R408W</sup> phenylketonuria mouse model.","authors":"Shuming Yin, Liangcai Gao, Xiaoyue Sun, Mei Zhang, Hongyi Gao, Xiaoqing Chen, Dan Zhang, Xinyu Ming, Lei Yang, Yaqiang Hu, Xi Chen, Meizhen Liu, Xia Zhan, Yuting Guan, Liren Wang, Lianshu Han, Ping Zhu, Dali Li","doi":"10.1016/j.ymthe.2024.11.032","DOIUrl":null,"url":null,"abstract":"<p><p>Phenylketonuria (PKU) is a liver metabolic disorders mainly caused by a deficiency of the hepatic phenylalanine hydroxylase (PAH) enzyme activity, often leading to severe brain function impairment in patients if untreated or if treatment is delayed. In this study, we utilized dual-AAV8 vectors to deliver a near PAM-less adenine base editor variant, known as ABE8e-SpRY, to treat the Pah<sup>R408W</sup> PKU mouse model carrying a frequent R408W mutation in the Pah gene. Our findings revealed that a single intravenous injection in adult mice and a single intraperitoneal injection in neonatal mice resulted in 19.1% to 34.6% A-to-G editing efficiency at the pathogenic mutation site with minimal bystander edits. Furthermore, the dual-AAV8 treated mice exhibited reduced blood Phe levels to below the therapeutic threshold of 360 μmol L<sup>-1</sup> and restored weight and fur color to normal levels. Importantly, the brain function of the mice was restored after the treatment, particularly when administered during the neonatal stage, as levels of monoamine neurotransmitters and metabolites in the brain returned to normal and near-normal levels. Our study demonstrated that ABE8e-SpRY-based base editing could effectively correct the point mutation in the Pah<sup>R408W</sup> PKU mouse model, indicating potential clinical applications for PKU and other genetic diseases.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2024.11.032","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Phenylketonuria (PKU) is a liver metabolic disorders mainly caused by a deficiency of the hepatic phenylalanine hydroxylase (PAH) enzyme activity, often leading to severe brain function impairment in patients if untreated or if treatment is delayed. In this study, we utilized dual-AAV8 vectors to deliver a near PAM-less adenine base editor variant, known as ABE8e-SpRY, to treat the PahR408W PKU mouse model carrying a frequent R408W mutation in the Pah gene. Our findings revealed that a single intravenous injection in adult mice and a single intraperitoneal injection in neonatal mice resulted in 19.1% to 34.6% A-to-G editing efficiency at the pathogenic mutation site with minimal bystander edits. Furthermore, the dual-AAV8 treated mice exhibited reduced blood Phe levels to below the therapeutic threshold of 360 μmol L-1 and restored weight and fur color to normal levels. Importantly, the brain function of the mice was restored after the treatment, particularly when administered during the neonatal stage, as levels of monoamine neurotransmitters and metabolites in the brain returned to normal and near-normal levels. Our study demonstrated that ABE8e-SpRY-based base editing could effectively correct the point mutation in the PahR408W PKU mouse model, indicating potential clinical applications for PKU and other genetic diseases.
期刊介绍:
Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.