Mohamed Badr, Elshaymaa I Elmongy, Doaa Elkhateeb, Yasmine S Moemen, Ashraf Khalil, Hadeer Ali, Reem Binsuwaidan, Feby Awadallah, Ibrahim El Tantawy El Sayed
{"title":"In Silico and In Vitro Investigation of Cytotoxicity and Apoptosis of Acridine/Sulfonamide Hybrids Targeting Topoisomerases I and II.","authors":"Mohamed Badr, Elshaymaa I Elmongy, Doaa Elkhateeb, Yasmine S Moemen, Ashraf Khalil, Hadeer Ali, Reem Binsuwaidan, Feby Awadallah, Ibrahim El Tantawy El Sayed","doi":"10.3390/ph17111487","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sulfonamide acridine derivatives have garnered significant attention from medicinal chemists due to their diverse range of biological activities.</p><p><strong>Methods: </strong>In this study, eleven compounds were synthesized according to the literature, and their impact on cell growth inhibition, induction of apoptosis, and cell cycle distribution were assessed in three different cell lines. Their inhibitory effects on the topoisomerase (Topo) I and II were investigated in vitro. Molecular docking studies were conducted to predict the binding affinities of these compounds for crystallized downloaded topoisomerases.</p><p><strong>Results: </strong>The compounds were examined in vitro for their anticancer activity against human hepatic (HepG2) colon (HCT-8) and breast (MCF-7) carcinoma cell lines. Compound <b>8b</b> was the most active against HepG2, HCT-116, and MCF-7 with IC<sub>50</sub> 14.51, 9.39, and 8.83 µM, respectively, compared to Doxorubicin as reference. In addition, it demonstrated the highest potency among the tested compounds against Topo-I, with an IC<sub>50</sub> value of 3.41 µg/mL compared to the control camptothecin (IC<sub>50</sub> of 1.46 μM). Compound <b>7c</b> displayed a significant inhibitory effect on Topo-II, with an IC<sub>50</sub> of 7.33 μM, compared to an IC<sub>50</sub> value of 6.49 μM via Doxorubicin, the control. Compounds <b>7c</b> and <b>8b</b> were assessed against topoisomerases showing induction of apoptosis and a reduction in the S phase of the cell cycle. Molecular docking demonstrated interaction with the active site as with those exhibited by the co-crystallized ligands of the crystallized proteins in both topoisomerases.</p><p><strong>Conclusion: </strong>Compounds <b>7c</b> and <b>8b</b> hold promise as potential anticancer drugs due to their anti-proliferative and proapoptotic effects, which are mediated by their action on the topoisomerase enzyme, particularly Topo II.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"17 11","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11597879/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph17111487","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Sulfonamide acridine derivatives have garnered significant attention from medicinal chemists due to their diverse range of biological activities.
Methods: In this study, eleven compounds were synthesized according to the literature, and their impact on cell growth inhibition, induction of apoptosis, and cell cycle distribution were assessed in three different cell lines. Their inhibitory effects on the topoisomerase (Topo) I and II were investigated in vitro. Molecular docking studies were conducted to predict the binding affinities of these compounds for crystallized downloaded topoisomerases.
Results: The compounds were examined in vitro for their anticancer activity against human hepatic (HepG2) colon (HCT-8) and breast (MCF-7) carcinoma cell lines. Compound 8b was the most active against HepG2, HCT-116, and MCF-7 with IC50 14.51, 9.39, and 8.83 µM, respectively, compared to Doxorubicin as reference. In addition, it demonstrated the highest potency among the tested compounds against Topo-I, with an IC50 value of 3.41 µg/mL compared to the control camptothecin (IC50 of 1.46 μM). Compound 7c displayed a significant inhibitory effect on Topo-II, with an IC50 of 7.33 μM, compared to an IC50 value of 6.49 μM via Doxorubicin, the control. Compounds 7c and 8b were assessed against topoisomerases showing induction of apoptosis and a reduction in the S phase of the cell cycle. Molecular docking demonstrated interaction with the active site as with those exhibited by the co-crystallized ligands of the crystallized proteins in both topoisomerases.
Conclusion: Compounds 7c and 8b hold promise as potential anticancer drugs due to their anti-proliferative and proapoptotic effects, which are mediated by their action on the topoisomerase enzyme, particularly Topo II.
PharmaceuticalsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍:
Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.Our aim is to publish updated reviews as well as research articles with comprehensive theoretical and experimental details. Short communications are also accepted; therefore, there is no restriction on the maximum length of the papers.