{"title":"PlanText: Gradually Masked Guidance to Align Image Phenotypes with Trait Descriptions for Plant Disease Texts.","authors":"Kejun Zhao, Xingcai Wu, Yuanyuan Xiao, Sijun Jiang, Peijia Yu, Yazhou Wang, Qi Wang","doi":"10.34133/plantphenomics.0272","DOIUrl":null,"url":null,"abstract":"<p><p>Plant diseases are a critical driver of the global food crisis. The integration of advanced artificial intelligence technologies can substantially enhance plant disease diagnostics. However, current methods for early and complex detection remain challenging. Employing multimodal technologies, akin to medical artificial intelligence diagnostics that combine diverse data types, may offer a more effective solution. Presently, the reliance on single-modal data predominates in plant disease research, which limits the scope for early and detailed diagnosis. Consequently, developing text modality generation techniques is essential for overcoming the limitations in plant disease recognition. To this end, we propose a method for aligning plant phenotypes with trait descriptions, which diagnoses text by progressively masking disease images. First, for training and validation, we annotate 5,728 disease phenotype images with expert diagnostic text and provide annotated text and trait labels for 210,000 disease images. Then, we propose a PhenoTrait text description model, which consists of global and heterogeneous feature encoders as well as switching-attention decoders, for accurate context-aware output. Next, to generate a more phenotypically appropriate description, we adopt 3 stages of embedding image features into semantic structures, which generate characterizations that preserve trait features. Finally, our experimental results show that our model outperforms several frontier models in multiple trait descriptions, including the larger models GPT-4 and GPT-4o. Our code and dataset are available at https://plantext.samlab.cn/.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"6 ","pages":"0272"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589250/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0272","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant diseases are a critical driver of the global food crisis. The integration of advanced artificial intelligence technologies can substantially enhance plant disease diagnostics. However, current methods for early and complex detection remain challenging. Employing multimodal technologies, akin to medical artificial intelligence diagnostics that combine diverse data types, may offer a more effective solution. Presently, the reliance on single-modal data predominates in plant disease research, which limits the scope for early and detailed diagnosis. Consequently, developing text modality generation techniques is essential for overcoming the limitations in plant disease recognition. To this end, we propose a method for aligning plant phenotypes with trait descriptions, which diagnoses text by progressively masking disease images. First, for training and validation, we annotate 5,728 disease phenotype images with expert diagnostic text and provide annotated text and trait labels for 210,000 disease images. Then, we propose a PhenoTrait text description model, which consists of global and heterogeneous feature encoders as well as switching-attention decoders, for accurate context-aware output. Next, to generate a more phenotypically appropriate description, we adopt 3 stages of embedding image features into semantic structures, which generate characterizations that preserve trait features. Finally, our experimental results show that our model outperforms several frontier models in multiple trait descriptions, including the larger models GPT-4 and GPT-4o. Our code and dataset are available at https://plantext.samlab.cn/.
期刊介绍:
Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals.
The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics.
The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.