miR-1, miR-133a, miR-29b and skeletal muscle fibrosis in chronic limb-threatening ischaemia.

IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Reports Pub Date : 2024-11-26 DOI:10.1038/s41598-024-76415-9
Alan J Keane, Clara Sanz-Nogués, Dulan Jayasooriya, Michael Creane, Xizhe Chen, Caomhán J Lyons, Isha Sikri, Katarzyna Goljanek-Whysall, Timothy O'Brien
{"title":"miR-1, miR-133a, miR-29b and skeletal muscle fibrosis in chronic limb-threatening ischaemia.","authors":"Alan J Keane, Clara Sanz-Nogués, Dulan Jayasooriya, Michael Creane, Xizhe Chen, Caomhán J Lyons, Isha Sikri, Katarzyna Goljanek-Whysall, Timothy O'Brien","doi":"10.1038/s41598-024-76415-9","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic limb-threatening ischaemia (CLTI), the most severe manifestation of peripheral arterial disease (PAD), is associated with a poor prognosis and high amputation rates. Despite novel therapeutic approaches being investigated, no significant clinical benefits have been observed yet. Understanding the molecular pathways of skeletal muscle dysfunction in CLTI is crucial for designing successful treatments. This study aimed to identify miRNAs dysregulated in muscle biopsies from PAD cohorts. Using MIcroRNA ENrichment TURned NETwork (MIENTURNET) on a publicly accessible RNA-sequencing dataset of PAD cohorts, we identified a list of miRNAs that were over-represented among the upregulated differentially expressed genes (DEGs) in CLTI. Next, we validated the altered expression of these miRNAs and their targets in mice with hindlimb ischaemia (HLI). Our results showed a significant downregulation of miR-1, miR-133a, and miR-29b levels in the ischaemic limbs versus the contralateral non-ischaemic limb. A miRNA target protein-protein interaction network identified extracellular matrix components, including collagen-1a1, -3a1, and -4a1, fibronectin-1, fibrin-1, matrix metalloproteinase-2 and -14, and Sparc, which were upregulated in the ischaemic muscle of mice. This is the first study to identify miR-1, miR-133a, and miR-29b as potential contributors to fibrosis and vascular pathology in CLTI muscle, which supports their potential as novel therapeutic agents for this condition.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"29393"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-76415-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic limb-threatening ischaemia (CLTI), the most severe manifestation of peripheral arterial disease (PAD), is associated with a poor prognosis and high amputation rates. Despite novel therapeutic approaches being investigated, no significant clinical benefits have been observed yet. Understanding the molecular pathways of skeletal muscle dysfunction in CLTI is crucial for designing successful treatments. This study aimed to identify miRNAs dysregulated in muscle biopsies from PAD cohorts. Using MIcroRNA ENrichment TURned NETwork (MIENTURNET) on a publicly accessible RNA-sequencing dataset of PAD cohorts, we identified a list of miRNAs that were over-represented among the upregulated differentially expressed genes (DEGs) in CLTI. Next, we validated the altered expression of these miRNAs and their targets in mice with hindlimb ischaemia (HLI). Our results showed a significant downregulation of miR-1, miR-133a, and miR-29b levels in the ischaemic limbs versus the contralateral non-ischaemic limb. A miRNA target protein-protein interaction network identified extracellular matrix components, including collagen-1a1, -3a1, and -4a1, fibronectin-1, fibrin-1, matrix metalloproteinase-2 and -14, and Sparc, which were upregulated in the ischaemic muscle of mice. This is the first study to identify miR-1, miR-133a, and miR-29b as potential contributors to fibrosis and vascular pathology in CLTI muscle, which supports their potential as novel therapeutic agents for this condition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
miR-1、miR-133a、miR-29b 与慢性肢体缺血的骨骼肌纤维化。
慢性肢体缺血(CLTI)是外周动脉疾病(PAD)最严重的表现形式,预后差,截肢率高。尽管目前正在研究新的治疗方法,但尚未观察到明显的临床疗效。了解CLTI患者骨骼肌功能障碍的分子途径对于设计成功的治疗方法至关重要。本研究旨在鉴定 PAD 队列肌肉活检组织中失调的 miRNA。我们在公开的 PAD 队列 RNA 序列数据集上使用 MIcroRNA ENrichment TURned NETwork(MIENTURNET),确定了在 CLTI 中差异表达基因(DEGs)上调的 miRNAs 列表。接下来,我们验证了这些 miRNA 及其靶标在后肢缺血(HLI)小鼠中的表达变化。结果显示,缺血肢体的 miR-1、miR-133a 和 miR-29b 水平较对侧非缺血肢体明显下调。miRNA靶蛋白-蛋白相互作用网络确定了小鼠缺血肌肉中上调的细胞外基质成分,包括胶原-1a1、-3a1和-4a1、纤连蛋白-1、纤维蛋白-1、基质金属蛋白酶-2和-14以及Sparc。这是首次研究发现 miR-1、miR-133a 和 miR-29b 是导致 CLTI 肌肉纤维化和血管病理学的潜在因素,这支持了它们作为治疗这种疾病的新型药物的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
期刊最新文献
High temperature wear and corrosion behavior of detonation sprayed Fe-based amorphous coatings. Influence of unhealthy diet and sedentary behavior on the oral health-related quality of life of 12-year-old Brazilian adolescents. Microplastics in sea ice drifted to the Shiretoko Peninsula, the southern end of the Sea of Okhotsk. ADAR1 could be a potential diagnostic target for intrauterine infection patients. Circulating YKL-40 levels but not CHI3L1 or TRIB1 gene variants predict long-term outcomes in patients with angiographically confirmed multivessel coronary artery disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1