MOTH: Memory-Efficient On-the-Fly Tiling of Histological Image Annotations Using QuPath.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Journal of Imaging Pub Date : 2024-11-15 DOI:10.3390/jimaging10110292
Thomas Kauer, Jannik Sehring, Kai Schmid, Marek Bartkuhn, Benedikt Wiebach, Slaven Crnkovic, Grazyna Kwapiszewska, Till Acker, Daniel Amsel
{"title":"MOTH: Memory-Efficient On-the-Fly Tiling of Histological Image Annotations Using QuPath.","authors":"Thomas Kauer, Jannik Sehring, Kai Schmid, Marek Bartkuhn, Benedikt Wiebach, Slaven Crnkovic, Grazyna Kwapiszewska, Till Acker, Daniel Amsel","doi":"10.3390/jimaging10110292","DOIUrl":null,"url":null,"abstract":"<p><p>The emerging usage of digitalized histopathological images is leading to a novel possibility for data analysis. With the help of artificial intelligence algorithms, it is now possible to detect certain structures and morphological features on whole slide images automatically. This enables algorithms to count, measure, or evaluate those areas when trained properly. To achieve suitable training, datasets must be annotated and curated by users in programs like QuPath. The extraction of this data for artificial intelligence algorithms is still rather tedious and needs to be saved on a local hard drive. We developed a toolkit for integration into existing pipelines and tools, like U-net, for the on-the-fly extraction of annotation tiles from existing QuPath projects. The tiles can be directly used as input for artificial intelligence algorithms, and the results are directly transferred back to QuPath for visual inspection. With the toolkit, we created a convenient way to incorporate QuPath into existing AI workflows.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"10 11","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595786/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging10110292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The emerging usage of digitalized histopathological images is leading to a novel possibility for data analysis. With the help of artificial intelligence algorithms, it is now possible to detect certain structures and morphological features on whole slide images automatically. This enables algorithms to count, measure, or evaluate those areas when trained properly. To achieve suitable training, datasets must be annotated and curated by users in programs like QuPath. The extraction of this data for artificial intelligence algorithms is still rather tedious and needs to be saved on a local hard drive. We developed a toolkit for integration into existing pipelines and tools, like U-net, for the on-the-fly extraction of annotation tiles from existing QuPath projects. The tiles can be directly used as input for artificial intelligence algorithms, and the results are directly transferred back to QuPath for visual inspection. With the toolkit, we created a convenient way to incorporate QuPath into existing AI workflows.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MOTH:使用 QuPath 对组织学图像注释进行记忆高效的即时平铺。
数字化组织病理图像的新兴应用为数据分析带来了新的可能性。在人工智能算法的帮助下,现在可以自动检测整张切片图像上的某些结构和形态特征。这样,只要经过适当的训练,算法就能对这些区域进行计数、测量或评估。要实现适当的训练,数据集必须由用户在 QuPath 等程序中进行注释和策划。为人工智能算法提取这些数据仍然相当繁琐,而且需要保存在本地硬盘上。我们开发了一个工具包,用于集成到现有的管道和工具(如 U-net)中,以便从现有的 QuPath 项目中即时提取注释图块。瓦片可直接用作人工智能算法的输入,其结果可直接传回 QuPath 进行可视化检查。有了这个工具包,我们创建了一种便捷的方式,将 QuPath 融入现有的人工智能工作流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
期刊最新文献
AQSA-Algorithm for Automatic Quantification of Spheres Derived from Cancer Cells in Microfluidic Devices. Editorial on the Special Issue "Fluorescence Imaging and Analysis of Cellular Systems". Spatially Localized Visual Perception Estimation by Means of Prosthetic Vision Simulation. MOTH: Memory-Efficient On-the-Fly Tiling of Histological Image Annotations Using QuPath. Anatomical Characteristics of Cervicomedullary Compression on MRI Scans in Children with Achondroplasia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1