Gang Ye, Fan Bu, Divyasha Saxena, Hailey Turner-Hubbard, Morgan Herbst, Benjamin Spiller, Brian E Wadzinski, Lanying Du, Bin Liu, Jian Zheng, Fang Li
{"title":"Discovery of Nanosota-9 as anti-Omicron nanobody therapeutic candidate.","authors":"Gang Ye, Fan Bu, Divyasha Saxena, Hailey Turner-Hubbard, Morgan Herbst, Benjamin Spiller, Brian E Wadzinski, Lanying Du, Bin Liu, Jian Zheng, Fang Li","doi":"10.1371/journal.ppat.1012726","DOIUrl":null,"url":null,"abstract":"<p><p>Omicron subvariants of SARS-CoV-2 continue to pose a significant global health threat. Nanobodies, single-domain antibodies derived from camelids, are promising therapeutic tools against pandemic viruses due to their favorable properties. In this study, we identified a novel nanobody, Nanosota-9, which demonstrates high potency against a wide range of Omicron subvariants both in vitro and in a mouse model. Cryo-EM data revealed that Nanosota-9 neutralizes Omicron through a unique mechanism: two Nanosota-9 molecules crosslink two receptor-binding domains (RBDs) of the trimeric Omicron spike protein, preventing the RBDs from binding to the ACE2 receptor. This mechanism explains its strong anti-Omicron potency. Additionally, the Nanosota-9 binding epitopes on the spike protein are relatively conserved among Omicron subvariants, contributing to its broad anti-Omicron spectrum. Combined with our recently developed structure-guided in vitro evolution approach for nanobodies, Nanosota-9 has the potential to serve as the foundation for a superior anti-Omicron therapeutic.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"20 11","pages":"e1012726"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012726","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Omicron subvariants of SARS-CoV-2 continue to pose a significant global health threat. Nanobodies, single-domain antibodies derived from camelids, are promising therapeutic tools against pandemic viruses due to their favorable properties. In this study, we identified a novel nanobody, Nanosota-9, which demonstrates high potency against a wide range of Omicron subvariants both in vitro and in a mouse model. Cryo-EM data revealed that Nanosota-9 neutralizes Omicron through a unique mechanism: two Nanosota-9 molecules crosslink two receptor-binding domains (RBDs) of the trimeric Omicron spike protein, preventing the RBDs from binding to the ACE2 receptor. This mechanism explains its strong anti-Omicron potency. Additionally, the Nanosota-9 binding epitopes on the spike protein are relatively conserved among Omicron subvariants, contributing to its broad anti-Omicron spectrum. Combined with our recently developed structure-guided in vitro evolution approach for nanobodies, Nanosota-9 has the potential to serve as the foundation for a superior anti-Omicron therapeutic.
期刊介绍:
Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.