Na Hu, Yunfeng Li, Guohong Zhang, Wei Wang, Liping An, Ran An, Yu Liu
{"title":"PF4 regulates neuronal ferroptosis in cerebral hemorrhage through CXCR3/PI3K/AKT/Nrf2 pathway.","authors":"Na Hu, Yunfeng Li, Guohong Zhang, Wei Wang, Liping An, Ran An, Yu Liu","doi":"10.17305/bb.2024.11415","DOIUrl":null,"url":null,"abstract":"<p><p>Inhibiting ferroptosis represents a promising strategy for managing neuronal injury caused by intracerebral hemorrhage (ICH). Platelet factor 4 (PF4), a chemokine with diverse biological functions, has an unclear role in ICH and its impact on neuronal ferroptosis. To investigate this, a hemin-induced injury model was established in PC12 cells in vitro, and an ICH model was created in vivo using IV collagenase injection. Hemin-treated PC12 cells were co-cultured with recombinant mouse PF4 (Rm-PF4) protein to examine the effects of PF4 on ferroptosis. Additionally, Rm-PF4 was administered intraperitoneally to ICH mice, and its influence on neurological dysfunction, brain edema, and neuronal ferroptosis was evaluated. Western blot analysis was employed to assess PF4 levels, CXCR3/phosphatidylinositol 3-kinase (PI3K)/AKT/nuclear factor erythroid-2-related factor 2 (Nrf2) pathway activation, and ferroptosis-related protein expression. PF4 levels were found to be reduced in both perihematomal brain tissues of ICH mice and hemin-treated PC12 cells. Treatment with Rm-PF4 decreased ferrous ion, malondialdehyde (MDA), and reactive oxygen species (ROS) levels, effectively inhibiting ferroptosis in PC12 cells. Furthermore, Rm-PF4 administration alleviated neurological dysfunction, neuronal damage, and brain edema while suppressing neuronal ferroptosis in ICH mice. Mechanistically, Rm-PF4 activated the CXCR3/PI3K/AKT/Nrf2 pathway, and this protective effect was diminished by a CXCR3 antagonist in both ICH mice and hemin-treated PC12 cells. In conclusion, PF4 mitigates ICH-induced neuronal ferroptosis in mouse models and PC12 cells by activating the CXCR3/PI3K/AKT/Nrf2 pathway.</p>","PeriodicalId":72398,"journal":{"name":"Biomolecules & biomedicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17305/bb.2024.11415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Inhibiting ferroptosis represents a promising strategy for managing neuronal injury caused by intracerebral hemorrhage (ICH). Platelet factor 4 (PF4), a chemokine with diverse biological functions, has an unclear role in ICH and its impact on neuronal ferroptosis. To investigate this, a hemin-induced injury model was established in PC12 cells in vitro, and an ICH model was created in vivo using IV collagenase injection. Hemin-treated PC12 cells were co-cultured with recombinant mouse PF4 (Rm-PF4) protein to examine the effects of PF4 on ferroptosis. Additionally, Rm-PF4 was administered intraperitoneally to ICH mice, and its influence on neurological dysfunction, brain edema, and neuronal ferroptosis was evaluated. Western blot analysis was employed to assess PF4 levels, CXCR3/phosphatidylinositol 3-kinase (PI3K)/AKT/nuclear factor erythroid-2-related factor 2 (Nrf2) pathway activation, and ferroptosis-related protein expression. PF4 levels were found to be reduced in both perihematomal brain tissues of ICH mice and hemin-treated PC12 cells. Treatment with Rm-PF4 decreased ferrous ion, malondialdehyde (MDA), and reactive oxygen species (ROS) levels, effectively inhibiting ferroptosis in PC12 cells. Furthermore, Rm-PF4 administration alleviated neurological dysfunction, neuronal damage, and brain edema while suppressing neuronal ferroptosis in ICH mice. Mechanistically, Rm-PF4 activated the CXCR3/PI3K/AKT/Nrf2 pathway, and this protective effect was diminished by a CXCR3 antagonist in both ICH mice and hemin-treated PC12 cells. In conclusion, PF4 mitigates ICH-induced neuronal ferroptosis in mouse models and PC12 cells by activating the CXCR3/PI3K/AKT/Nrf2 pathway.