Xiaolong Zhang, Qingmin Song, Shaopeng Liu, Paramasivam Sivaguru, Zhaohong Liu, Yong Yang, Yongyue Ning, Edward A. Anderson, Graham de Ruiter, Xihe Bi
{"title":"Asymmetric dearomative single-atom skeletal editing of indoles and pyrroles","authors":"Xiaolong Zhang, Qingmin Song, Shaopeng Liu, Paramasivam Sivaguru, Zhaohong Liu, Yong Yang, Yongyue Ning, Edward A. Anderson, Graham de Ruiter, Xihe Bi","doi":"10.1038/s41557-024-01680-0","DOIUrl":null,"url":null,"abstract":"<p>Heterocycle skeletal editing has recently emerged as a powerful tactic for achieving heterocycle-to-heterocycle transmutation without the need for multistep de novo heterocycle synthesis. However, the enantioselective skeletal editing of heteroarenes through single-atom logic remains challenging. Here we report the enantiodivergent dearomative skeletal editing of indoles and pyrroles via an asymmetric carbon-atom insertion, using trifluoromethyl N-triftosylhydrazones as carbene precursors. This strategy provides a straightforward methodology to access enantiomerically enriched six-membered N-heterocycles containing a trifluoromethylated quaternary stereocentre from planar N-heteroarenes. The synthetic utility of this enantiodivergent methodology was demonstrated by a broad evaluation of reaction scope, product derivatization and concise syntheses of drug analogues. Mechanistic studies reveal that the excellent asymmetric induction arises from the initial cyclopropanation step. The asymmetric single-atom insertion strategy is expected to have a broad impact on the field of single-atom skeletal editing and catalytic asymmetric dearomatization of aromatic compounds.</p><figure></figure>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"6 1","pages":""},"PeriodicalIF":19.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-024-01680-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Heterocycle skeletal editing has recently emerged as a powerful tactic for achieving heterocycle-to-heterocycle transmutation without the need for multistep de novo heterocycle synthesis. However, the enantioselective skeletal editing of heteroarenes through single-atom logic remains challenging. Here we report the enantiodivergent dearomative skeletal editing of indoles and pyrroles via an asymmetric carbon-atom insertion, using trifluoromethyl N-triftosylhydrazones as carbene precursors. This strategy provides a straightforward methodology to access enantiomerically enriched six-membered N-heterocycles containing a trifluoromethylated quaternary stereocentre from planar N-heteroarenes. The synthetic utility of this enantiodivergent methodology was demonstrated by a broad evaluation of reaction scope, product derivatization and concise syntheses of drug analogues. Mechanistic studies reveal that the excellent asymmetric induction arises from the initial cyclopropanation step. The asymmetric single-atom insertion strategy is expected to have a broad impact on the field of single-atom skeletal editing and catalytic asymmetric dearomatization of aromatic compounds.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.