Microwave-assisted fabrication of self-supported graphene-based high-entropy alloy electrode for efficient and stable electrocatalytic nitrate reduction to ammonia

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Frontiers Pub Date : 2024-11-28 DOI:10.1039/d4qi02881c
Yun Ling, Qingyun Feng, Xuan Zheng, Hui Su, Yuanyuan Zhang, Zehua Zou, Aifen Liu, Yang Huang, Jing Tang, Yi Li, Maosheng Zhang, Qingxiang Wang
{"title":"Microwave-assisted fabrication of self-supported graphene-based high-entropy alloy electrode for efficient and stable electrocatalytic nitrate reduction to ammonia","authors":"Yun Ling, Qingyun Feng, Xuan Zheng, Hui Su, Yuanyuan Zhang, Zehua Zou, Aifen Liu, Yang Huang, Jing Tang, Yi Li, Maosheng Zhang, Qingxiang Wang","doi":"10.1039/d4qi02881c","DOIUrl":null,"url":null,"abstract":"Direct electrochemical nitrate reduction for ammonia (NRA) synthesis is an efficient and environmentally friendly production technology. However, the development of highly selective electrocatalysts is still a challenge due to its nine-proton and eight-electron reaction. High-entropy alloys (HEAs) have a wide range of elements and adjustable properties, giving them excellent application potential in multi-step reactions. In this work, we skillfully use the local high temperature and excellent thermal conductivity generated at the reduced graphene oxide (rGO) defect in the microwave process to achieve a rapid quenching process in 10 seconds. This approach overcomes element immiscibility and results in a self-supported, single-phase, non-precious metal and uniform FeCoNiCuSn alloy electrode. The HEA reaches a remarkable NH3 yield of 883.7±11.2 μg h<small><sup>-1</sup></small> cm<small><sup>-2</sup></small>, the maximum Faradaic efficiency (FE) of 94.5±1.4%, and the highest NH3 selectivity of 90.4±2.7%. Experimental and theoretical calculations reveal that the presence of multiple adjacent elements in HEA triggers a synergistic catalytic effect, while the excellent mass and charge transfer properties of rGO jointly encourage the performance of electrochemical NRA. In particular, NO<small><sub>3</sub></small><small><sup>−</sup></small> favors vertical adsorption at Fe-Fe sites, and the desorption of NH3 is identified as the rate-determining step (RDS) with a extremely small ΔG of 0.7eV.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"58 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi02881c","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Direct electrochemical nitrate reduction for ammonia (NRA) synthesis is an efficient and environmentally friendly production technology. However, the development of highly selective electrocatalysts is still a challenge due to its nine-proton and eight-electron reaction. High-entropy alloys (HEAs) have a wide range of elements and adjustable properties, giving them excellent application potential in multi-step reactions. In this work, we skillfully use the local high temperature and excellent thermal conductivity generated at the reduced graphene oxide (rGO) defect in the microwave process to achieve a rapid quenching process in 10 seconds. This approach overcomes element immiscibility and results in a self-supported, single-phase, non-precious metal and uniform FeCoNiCuSn alloy electrode. The HEA reaches a remarkable NH3 yield of 883.7±11.2 μg h-1 cm-2, the maximum Faradaic efficiency (FE) of 94.5±1.4%, and the highest NH3 selectivity of 90.4±2.7%. Experimental and theoretical calculations reveal that the presence of multiple adjacent elements in HEA triggers a synergistic catalytic effect, while the excellent mass and charge transfer properties of rGO jointly encourage the performance of electrochemical NRA. In particular, NO3 favors vertical adsorption at Fe-Fe sites, and the desorption of NH3 is identified as the rate-determining step (RDS) with a extremely small ΔG of 0.7eV.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微波辅助制备自支撑石墨烯基高熵合金电极,用于高效稳定地电催化硝酸盐还原为氨气
直接电化学硝酸盐还原合成氨(NRA)是一种高效、环保的生产技术。然而,由于硝酸还原反应具有九个质子和八个电子,因此开发高选择性电催化剂仍是一项挑战。高熵合金(HEAs)具有元素种类多、性能可调等特点,在多步反应中具有很好的应用潜力。在这项工作中,我们巧妙地利用了微波过程中还原氧化石墨烯(rGO)缺陷处产生的局部高温和优异的导热性,实现了 10 秒内的快速淬火过程。这种方法克服了元素不相溶的问题,得到了自支撑、单相、非贵金属和均匀的铁钴镍铜锡合金电极。HEA 的 NH3 产率高达 883.7±11.2 μg h-1 cm-2,最大法拉第效率 (FE) 为 94.5±1.4%,最高 NH3 选择性为 90.4±2.7%。实验和理论计算表明,HEA 中多种相邻元素的存在引发了协同催化效应,而 rGO 优异的质量和电荷转移特性共同促进了电化学 NRA 的性能。特别是,NO3- 有利于在铁-铁位点垂直吸附,而 NH3 的解吸被确定为速率决定步骤 (RDS),ΔG 极小,仅为 0.7eV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
期刊最新文献
Unravelling the formation pathway and energetic landscape of lanthanide cages based on bis-β-diketonato ligands Ionothermal Synthesis of a Stable Three-Dimensional [Cu4I4] Cluster Scintillator with Near-Unity Quantum Efficiency and Weak Thermal Quenching A cobalt(II)-nitronyl nitroxide single chain magnet with record blocking temperature and low coercivity. Microwave-assisted fabrication of self-supported graphene-based high-entropy alloy electrode for efficient and stable electrocatalytic nitrate reduction to ammonia Bimetallic ZnSe-SnSe2 heterostructure functionalized separator for high-rate Li-S battery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1