Large-Scale Multi-Session Point-Cloud Map Merging

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2024-11-21 DOI:10.1109/LRA.2024.3504317
Hairuo Wei;Rundong Li;Yixi Cai;Chongjian Yuan;Yunfan Ren;Zuhao Zou;Huajie Wu;Chunran Zheng;Shunbo Zhou;Kaiwen Xue;Fu Zhang
{"title":"Large-Scale Multi-Session Point-Cloud Map Merging","authors":"Hairuo Wei;Rundong Li;Yixi Cai;Chongjian Yuan;Yunfan Ren;Zuhao Zou;Huajie Wu;Chunran Zheng;Shunbo Zhou;Kaiwen Xue;Fu Zhang","doi":"10.1109/LRA.2024.3504317","DOIUrl":null,"url":null,"abstract":"This paper introduces LAMM, an open-source framework for large-scale multi-session 3D LiDAR point cloud map merging. LAMM can automatically integrate sub-maps from multiple agents carrying LiDARs with different scanning patterns, facilitating place feature extraction, data association, and global optimization in various environments. Our framework incorporates two key novelties that enable robust, accurate, large-scale map merging. The first novelty is a temporal bidirectional filtering mechanism that removes dynamic objects from 3D LiDAR point cloud data. This eliminates the effect of dynamic objects on the 3D map model, providing higher-quality map merging results. The second novelty is a robust and efficient outlier removal algorithm for detected loop closures. This algorithm ensures a high recall rate and a low false alarm rate in position retrieval, significantly reducing outliers in repetitive environments during large-scale merging. We evaluate our framework using various datasets, including KITTI, HeLiPR, WildPlaces, and a self-collected colored point cloud dataset. The results demonstrate that our proposed framework can accurately merge maps captured by different types of LiDARs and data acquisition devices across diverse scenarios.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 1","pages":"88-95"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10759717/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces LAMM, an open-source framework for large-scale multi-session 3D LiDAR point cloud map merging. LAMM can automatically integrate sub-maps from multiple agents carrying LiDARs with different scanning patterns, facilitating place feature extraction, data association, and global optimization in various environments. Our framework incorporates two key novelties that enable robust, accurate, large-scale map merging. The first novelty is a temporal bidirectional filtering mechanism that removes dynamic objects from 3D LiDAR point cloud data. This eliminates the effect of dynamic objects on the 3D map model, providing higher-quality map merging results. The second novelty is a robust and efficient outlier removal algorithm for detected loop closures. This algorithm ensures a high recall rate and a low false alarm rate in position retrieval, significantly reducing outliers in repetitive environments during large-scale merging. We evaluate our framework using various datasets, including KITTI, HeLiPR, WildPlaces, and a self-collected colored point cloud dataset. The results demonstrate that our proposed framework can accurately merge maps captured by different types of LiDARs and data acquisition devices across diverse scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模多会期点云图合并
本文介绍了用于大规模多分段三维激光雷达点云地图合并的开源框架 LAMM。LAMM 可以自动整合来自多个携带不同扫描模式激光雷达的代理的子地图,从而促进各种环境下的地点特征提取、数据关联和全局优化。我们的框架包含两个关键创新点,可实现稳健、准确的大规模地图合并。第一个创新点是一种时间双向过滤机制,可从三维激光雷达点云数据中去除动态物体。这消除了动态物体对三维地图模型的影响,提供了更高质量的地图合并结果。第二个新颖之处是针对检测到的环路闭合采用了稳健高效的离群值去除算法。该算法可确保位置检索的高召回率和低误报率,从而在大规模合并过程中显著减少重复环境中的异常值。我们使用 KITTI、HeLiPR、WildPlaces 和自收集的彩色点云数据集等各种数据集对我们的框架进行了评估。结果表明,我们提出的框架可以在不同场景下准确合并不同类型激光雷达和数据采集设备采集的地图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Table of Contents IEEE Robotics and Automation Society Information IEEE Robotics and Automation Letters Information for Authors IEEE Robotics and Automation Society Information Improving Human-Robot Collaboration via Computational Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1