In-Band Full-Duplex Multiple-Input Multiple-Output Systems for Simultaneous Communications and Sensing: Challenges, methods, and future perspectives [Special Issue on Signal Processing for the Integrated Sensing and Communications Revolution]
Besma Smida;George C. Alexandropoulos;Taneli Riihonen;Md Atiqul Islam
{"title":"In-Band Full-Duplex Multiple-Input Multiple-Output Systems for Simultaneous Communications and Sensing: Challenges, methods, and future perspectives [Special Issue on Signal Processing for the Integrated Sensing and Communications Revolution]","authors":"Besma Smida;George C. Alexandropoulos;Taneli Riihonen;Md Atiqul Islam","doi":"10.1109/MSP.2024.3449565","DOIUrl":null,"url":null,"abstract":"In-band full-duplex (FD) multiple-input, multiple-output (MIMO) systems offer a significant opportunity for integrated sensing and communications (ISAC) due to their capability to realize simultaneous signal transmissions and receptions. This feature has been recently exploited to devise spectrum-efficient simultaneous information transmission and monostatic sensing operations, a line of research typically referred to as \n<italic>MIMO FD-ISAC</i>\n. In this article, capitalizing on a recent FD MIMO architecture with reduced complexity analog cancellation, we present an FD-enabled framework for simultaneous communications and sensing using data signals. In contrast to communications applications, the framework’s goal is not to mitigate self-interference, since it includes reflections of the downlink data transmissions from targets in the FD node’s vicinity, but to optimize the system parameters for the intended dual functionality. The unique characteristics and challenges of a generic MIMO FD-ISAC system are discussed along with a broad overview of state-of-the-art special cases, including numerical investigations. Several directions for future work on FD-enabled ISAC relevant to signal processing communities are also provided.","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"41 5","pages":"8-16"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Magazine","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10769781/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In-band full-duplex (FD) multiple-input, multiple-output (MIMO) systems offer a significant opportunity for integrated sensing and communications (ISAC) due to their capability to realize simultaneous signal transmissions and receptions. This feature has been recently exploited to devise spectrum-efficient simultaneous information transmission and monostatic sensing operations, a line of research typically referred to as
MIMO FD-ISAC
. In this article, capitalizing on a recent FD MIMO architecture with reduced complexity analog cancellation, we present an FD-enabled framework for simultaneous communications and sensing using data signals. In contrast to communications applications, the framework’s goal is not to mitigate self-interference, since it includes reflections of the downlink data transmissions from targets in the FD node’s vicinity, but to optimize the system parameters for the intended dual functionality. The unique characteristics and challenges of a generic MIMO FD-ISAC system are discussed along with a broad overview of state-of-the-art special cases, including numerical investigations. Several directions for future work on FD-enabled ISAC relevant to signal processing communities are also provided.
期刊介绍:
EEE Signal Processing Magazine is a publication that focuses on signal processing research and applications. It publishes tutorial-style articles, columns, and forums that cover a wide range of topics related to signal processing. The magazine aims to provide the research, educational, and professional communities with the latest technical developments, issues, and events in the field. It serves as the main communication platform for the society, addressing important matters that concern all members.