Lane Detection by Variational Auto-Encoder With Normalizing Flow for Autonomous Driving

IF 7.9 1区 工程技术 Q1 ENGINEERING, CIVIL IEEE Transactions on Intelligent Transportation Systems Pub Date : 2024-10-09 DOI:10.1109/TITS.2024.3471640
Jingyue Shi;Junhui Zhao;Dongming Wang;Hong Tang
{"title":"Lane Detection by Variational Auto-Encoder With Normalizing Flow for Autonomous Driving","authors":"Jingyue Shi;Junhui Zhao;Dongming Wang;Hong Tang","doi":"10.1109/TITS.2024.3471640","DOIUrl":null,"url":null,"abstract":"Mainstream lane detection methods often lack flexibility, accuracy, and efficiency in challenging scenarios, especially with occlusion and extreme lighting. To address this, we reframe lane detection as a variational inference problem. Specifically, we propose a Variational Lane Detection Network (VLD-Net) using a Conditional Variational Auto-Encoder (CVAE) as the generative network to produce multiple lane maps as candidates, supervised by the ground-truth lane map. To build a more complex, expressive probability distribution, we incorporate normalizing flows into lane map generation, enhancing realism. Additionally, we develop a Lane-Attention Fusion (LAF) module using attention mechanisms to adaptively fuse generated candidate lane maps. LAF also includes a lane local feature aggregator to enhance local lane keypoint correlation. Experimental results on TuSimple and CULane datasets show our method outperforms previous approaches in challenging scenarios.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"25 12","pages":"21757-21768"},"PeriodicalIF":7.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10713095/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Mainstream lane detection methods often lack flexibility, accuracy, and efficiency in challenging scenarios, especially with occlusion and extreme lighting. To address this, we reframe lane detection as a variational inference problem. Specifically, we propose a Variational Lane Detection Network (VLD-Net) using a Conditional Variational Auto-Encoder (CVAE) as the generative network to produce multiple lane maps as candidates, supervised by the ground-truth lane map. To build a more complex, expressive probability distribution, we incorporate normalizing flows into lane map generation, enhancing realism. Additionally, we develop a Lane-Attention Fusion (LAF) module using attention mechanisms to adaptively fuse generated candidate lane maps. LAF also includes a lane local feature aggregator to enhance local lane keypoint correlation. Experimental results on TuSimple and CULane datasets show our method outperforms previous approaches in challenging scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用变异自动编码器和归一化流量进行车道检测以实现自动驾驶
在具有挑战性的场景中,尤其是在遮挡和极端光照的情况下,主流车道检测方法往往缺乏灵活性、准确性和效率。为了解决这个问题,我们将车道检测重构为一个变异推理问题。具体来说,我们提出了一种变异车道检测网络(VLD-Net),使用条件变异自动编码器(CVAE)作为生成网络,在地面实况车道图的监督下生成多个候选车道图。为了建立更复杂、更有表现力的概率分布,我们在生成车道图时加入了归一化流量,从而增强了真实性。此外,我们还开发了车道注意力融合(LAF)模块,利用注意力机制对生成的候选车道图进行自适应融合。LAF 还包括一个车道局部特征聚合器,以增强局部车道关键点的相关性。在 TuSimple 和 CULane 数据集上的实验结果表明,在具有挑战性的场景中,我们的方法优于之前的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Intelligent Transportation Systems
IEEE Transactions on Intelligent Transportation Systems 工程技术-工程:电子与电气
CiteScore
14.80
自引率
12.90%
发文量
1872
审稿时长
7.5 months
期刊介绍: The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.
期刊最新文献
Table of Contents Scanning the Issue IEEE Intelligent Transportation Systems Society Information IEEE INTELLIGENT TRANSPORTATION SYSTEMS SOCIETY SMPC-Based Motion Planning of Automated Vehicle When Interacting With Occluded Pedestrians
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1