Exsolved LaNiRuO3 perovskite-based catalysts for CO2 methanation reaction†

Ayesha A. Alkhoori, Eswaravara Prasadarao Komarala, Aasif A. Dabbawala, Aseel G. S. Hussien, Dalaver H. Anjum, Samuel Mao and Kyriaki Polychronopoulou
{"title":"Exsolved LaNiRuO3 perovskite-based catalysts for CO2 methanation reaction†","authors":"Ayesha A. Alkhoori, Eswaravara Prasadarao Komarala, Aasif A. Dabbawala, Aseel G. S. Hussien, Dalaver H. Anjum, Samuel Mao and Kyriaki Polychronopoulou","doi":"10.1039/D4SU00410H","DOIUrl":null,"url":null,"abstract":"<p >Hydrogenation of CO<small><sub>2</sub></small> for methane formation is one of the thermodynamically favorable processes for reducing atmospheric CO<small><sub>2</sub></small> emissions. The present work demonstrates the synthesis and evaluation of LaNiRuO<small><sub>3</sub></small> perovskite-derived catalysts for CO<small><sub>2</sub></small> methanation in both supported and unsupported (bulk) forms. Specifically, two catalysts were prepared: (i) a Ru-substituted LaNiO<small><sub>3</sub></small> perovskite, LaNi<small><sub>0.9</sub></small>Ru<small><sub>0.1</sub></small>O<small><sub>3</sub></small>, with 10 at% Ru and (ii) a supported version (30% LaNi<small><sub>0.9</sub></small>Ru<small><sub>0.1</sub></small>O<small><sub>3</sub></small>/Al<small><sub>2</sub></small>O<small><sub>3</sub></small>). The catalysts were synthesized through controlled reduction conditions, and they were thoroughly characterized, before and after the exsolution process, using XRD, TEM, XPS, BET, H<small><sub>2</sub></small>-TPR, and H<small><sub>2</sub></small>-TPD techniques. The characterization results indicated that the exsolved LaNi<small><sub>0.9</sub></small>Ru<small><sub>0.1</sub></small>O<small><sub>3</sub></small>/Al<small><sub>2</sub></small>O<small><sub>3</sub></small> catalyst formed small Ni particles (∼6 nm), resulting in better dispersion (18%) while maintaining a high surface area (141 m<small><sup>2</sup></small> g<small><sup>−1</sup></small>) and porosity. This catalyst demonstrated a 10% higher CO<small><sub>2</sub></small> conversion (77%) at a temperature lower by 50 °C (<em>i.e.</em> 400 °C) than the exsolved bulk LaNi<small><sub>0.9</sub></small>Ru<small><sub>0.1</sub></small>O<small><sub>3</sub></small> perovskite. Both catalysts exhibited over 90% selectivity for CH<small><sub>4</sub></small> in the 250–450 °C range. The enhanced catalytic performance of the exsolved LaNi<small><sub>0.9</sub></small>Ru<small><sub>0.1</sub></small>O<small><sub>3</sub></small>/Al<small><sub>2</sub></small>O<small><sub>3</sub></small> catalyst was attributed to the small Ni particle size, better dispersion, and the alumina support's high surface area and basic properties, facilitating the adsorption and dissociation of H<small><sub>2</sub></small> and CO<small><sub>2</sub></small>. Further long-term stability tests at 400 °C and 25 000 mL g<small><sup>−1</sup></small> h<small><sup>−1</sup></small> (WHSV) over 54 h revealed that the exsolved LaNi<small><sub>0.9</sub></small>Ru<small><sub>0.1</sub></small>O<small><sub>3</sub></small>/Al<small><sub>2</sub></small>O<small><sub>3</sub></small> catalyst maintained a 70% CO<small><sub>2</sub></small> conversion, with the CH<small><sub>4</sub></small> yield and selectivity above 60% and 95%, respectively. Thus, supporting the perovskite catalyst on Al<small><sub>2</sub></small>O<small><sub>3</sub></small> demonstrated a pronounced effect on the CO<small><sub>2</sub></small> conversion rate and CH<small><sub>4</sub></small> selectivity at lower temperatures along with ensuring the stability of catalyst over extended periods.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 12","pages":" 3866-3878"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/su/d4su00410h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00410h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogenation of CO2 for methane formation is one of the thermodynamically favorable processes for reducing atmospheric CO2 emissions. The present work demonstrates the synthesis and evaluation of LaNiRuO3 perovskite-derived catalysts for CO2 methanation in both supported and unsupported (bulk) forms. Specifically, two catalysts were prepared: (i) a Ru-substituted LaNiO3 perovskite, LaNi0.9Ru0.1O3, with 10 at% Ru and (ii) a supported version (30% LaNi0.9Ru0.1O3/Al2O3). The catalysts were synthesized through controlled reduction conditions, and they were thoroughly characterized, before and after the exsolution process, using XRD, TEM, XPS, BET, H2-TPR, and H2-TPD techniques. The characterization results indicated that the exsolved LaNi0.9Ru0.1O3/Al2O3 catalyst formed small Ni particles (∼6 nm), resulting in better dispersion (18%) while maintaining a high surface area (141 m2 g−1) and porosity. This catalyst demonstrated a 10% higher CO2 conversion (77%) at a temperature lower by 50 °C (i.e. 400 °C) than the exsolved bulk LaNi0.9Ru0.1O3 perovskite. Both catalysts exhibited over 90% selectivity for CH4 in the 250–450 °C range. The enhanced catalytic performance of the exsolved LaNi0.9Ru0.1O3/Al2O3 catalyst was attributed to the small Ni particle size, better dispersion, and the alumina support's high surface area and basic properties, facilitating the adsorption and dissociation of H2 and CO2. Further long-term stability tests at 400 °C and 25 000 mL g−1 h−1 (WHSV) over 54 h revealed that the exsolved LaNi0.9Ru0.1O3/Al2O3 catalyst maintained a 70% CO2 conversion, with the CH4 yield and selectivity above 60% and 95%, respectively. Thus, supporting the perovskite catalyst on Al2O3 demonstrated a pronounced effect on the CO2 conversion rate and CH4 selectivity at lower temperatures along with ensuring the stability of catalyst over extended periods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于二氧化碳甲烷化反应的溶出型 LaNiRuO3 超晶石基催化剂†。
二氧化碳加氢生成甲烷是减少大气二氧化碳排放的热力学有利过程之一。本研究以支撑和非支撑(块状)两种形式展示了用于 CO2 甲烷化的 LaNiRuO3 超晶石衍生催化剂的合成和评估。具体而言,我们制备了两种催化剂:(i) 含有 10% Ru 的 Ru 取代型 LaNiO3 包晶 LaNi0.9Ru0.1O3;(ii) 支持型(30% LaNi0.9Ru0.1O3/Al2O3)。这些催化剂是通过受控还原条件合成的,并在外延过程前后使用 XRD、TEM、XPS、BET、H2-TPR 和 H2-TPD 技术对其进行了全面表征。表征结果表明,外溶解的 LaNi0.9Ru0.1O3/Al2O3 催化剂形成了较小的 Ni 颗粒(∼6 nm),从而提高了分散度(18%),同时保持了较高的表面积(141 m2 g-1)和孔隙率。这种催化剂的二氧化碳转化率(77%)比外溶块状 LaNi0.9Ru0.1O3 包晶石低 50 ℃(即 400 ℃),高出 10%。在 250-450 ℃ 范围内,两种催化剂对 CH4 的选择性均超过 90%。溶出型 LaNi0.9Ru0.1O3/Al2O3 催化剂催化性能的提高归功于镍的粒径小、分散性好,以及氧化铝载体的高比表面积和碱性,这有利于 H2 和 CO2 的吸附和解离。在 400 °C 和 25 000 mL g-1 h-1(WHSV)条件下进行的 54 小时长期稳定性测试表明,溶出的 LaNi0.9Ru0.1O3/Al2O3 催化剂能保持 70% 的 CO2 转化率,CH4 收率和选择性分别高于 60% 和 95%。因此,在 Al2O3 上支撑包晶催化剂对较低温度下的 CO2 转化率和 CH4 选择性有明显的影响,同时还能确保催化剂在较长时间内的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
期刊最新文献
ESG assessment methodology for emerging technologies: plasma versus conventional technology for ammonia production. Back cover Inside back cover What is better to enhance the solubility of hydrophobic compounds in aqueous solutions: eutectic solvents or ionic liquids?† Utilizing advancements in chemical sciences for decarbonization: a pathway to sustainable emission and energy reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1